Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice.

Shinyoung Lee, Hyobin Jeong, Sichul Lee, Jinwon Lee, Sun-Ji Kim, Ji-Won Park, Hye Ryun Woo, Pyung Ok Lim, Gynheung An, Hong Gil Nam, Daehee Hwang
Author Information
  1. Shinyoung Lee: Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
  2. Hyobin Jeong: Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
  3. Sichul Lee: Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
  4. Jinwon Lee: Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
  5. Sun-Ji Kim: Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
  6. Ji-Won Park: Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
  7. Hye Ryun Woo: Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
  8. Pyung Ok Lim: Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea.
  9. Gynheung An: Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea.
  10. Hong Gil Nam: Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. nam@dgist.ac.kr.
  11. Daehee Hwang: Center for Plant Ageing Research, IBS, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea. dhwang@dgist.ac.kr.

Abstract

Flag leaves (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs between FL and SL is important for grain yield and quality. However, the molecular bases for differential aging programs between FL and SL have not been systematically explored in rice. Here, we performed mRNA-sequencing of FL and SL at six time points during grain-filling and identified four molecular bases for differential aging programs between FL and SL: phenylpropanoid biosynthesis, photosynthesis, amino acid (AA) transport, and hormone response. Of them, photosynthesis (carbon assimilation) and AA transport (nitrogen remobilization) predominantly occurred in FL and SL, respectively, during grain-filling. Unlike other molecular bases, AA transport showed consistent differential expression patterns between FL and SL in independent samples. Moreover, long-distance AA transporters showed invariant differential expression patterns between FL and SL after panicle removal, which was consistent to invariant differential nitrogen contents between FL and SL after panicle removal. Therefore, our results suggest that the supplies of carbon and nitrogen to seeds is functionally segregated between FL and SL and that long-distance AA transport is an invariant core program for high nitrogen remobilization in SL.

References

  1. Plant Physiol. 2002 Dec;130(4):1999-2010 [PMID: 12481083]
  2. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  3. J Exp Bot. 2015 Feb;66(3):973-87 [PMID: 25399020]
  4. Plant J. 2007 Oct;52(2):197-209 [PMID: 17714430]
  5. New Phytol. 2010 Jun;186(4):786-93 [PMID: 20569414]
  6. Mol Cells. 2014 Jul;37(7):532-9 [PMID: 25081037]
  7. Plant J. 2013 May;74(4):652-62 [PMID: 23432654]
  8. Photosynth Res. 2013 Nov;117(1-3):31-44 [PMID: 23695654]
  9. Biochim Biophys Acta. 1956 Aug;21(2):234-44 [PMID: 13363902]
  10. Nat Immunol. 2015 Jun;16(6):663-73 [PMID: 25894659]
  11. Planta. 2009 Apr;229(5):1047-56 [PMID: 19199104]
  12. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  13. Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:37-49 [PMID: 18721310]
  14. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):10013-8 [PMID: 24951508]
  15. Plant Physiol. 2006 Aug;141(4):1376-88 [PMID: 16778011]
  16. Trends Genet. 1999 Sep;15(9):364-70 [PMID: 10461205]
  17. PLoS One. 2008 Oct 06;3(10):e3337 [PMID: 18836531]
  18. Plant Cell. 1996 Aug;8(8):1437-46 [PMID: 8776904]
  19. J Exp Bot. 2009;60(15):4263-74 [PMID: 19858116]
  20. Plant Physiol. 1995 Dec;109(4):1159-66 [PMID: 8539286]
  21. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  22. Planta. 2012 Jan;235(1):1-11 [PMID: 21796369]
  23. PLoS One. 2012;7(11):e49210 [PMID: 23166615]
  24. Plant Cell Physiol. 2015 Jul;56(7):1355-63 [PMID: 25907566]
  25. Plant Physiol Biochem. 2014 Jul;80:300-7 [PMID: 24832615]
  26. Tree Physiol. 2005 Oct;25(10):1253-63 [PMID: 16076774]
  27. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  28. J Exp Bot. 2015 Dec;66(22):7045-59 [PMID: 26276867]
  29. Bioinformatics. 2003 Jan 22;19(2):185-93 [PMID: 12538238]
  30. Rice (N Y). 2013 Feb 06;6(1):4 [PMID: 24280374]
  31. J Exp Bot. 2014 Apr;65(7):1865-78 [PMID: 24489071]
  32. Plant Biol (Stuttg). 2008 Sep;10 Suppl 1:23-36 [PMID: 18721309]
  33. Plant Mol Biol. 2013 Aug;82(6):547-61 [PMID: 23504405]
  34. J Biol Chem. 2006 Mar 17;281(11):7197-204 [PMID: 16407306]
  35. Biochim Biophys Acta. 1994 Feb 8;1184(1):1-19 [PMID: 8305447]
  36. Genome Biol. 2010;11(3):R25 [PMID: 20196867]
  37. J Exp Bot. 2014 Jul;65(14):3799-811 [PMID: 24687977]
  38. Tree Physiol. 1999 Apr;19(4_5):235-242 [PMID: 12651566]
  39. Plant Physiol. 1981 Dec;68(6):1345-8 [PMID: 16662105]
  40. Plant J. 2009 Sep;59(6):940-52 [PMID: 19453447]
  41. Eur J Biochem. 1996 Jan 15;235(1-2):438-43 [PMID: 8631364]
  42. Plant Physiol. 1991 Feb;95(2):509-16 [PMID: 16668014]
  43. Plant J. 2000 Jun;22(6):561-70 [PMID: 10886776]
  44. Nucleic Acids Res. 2016 Jan 4;44(D1):D1133-40 [PMID: 26553803]
  45. Planta. 2016 Apr;243(4):889-908 [PMID: 26759350]
  46. Plants (Basel). 2015 Sep 01;4(3):644-63 [PMID: 27135344]
  47. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [PMID: 11752295]
  48. J Integr Plant Biol. 2012 Dec;54(12):936-52 [PMID: 23131150]
  49. Biochim Biophys Acta. 2013 Jan;1827(1):50-9 [PMID: 23084968]
  50. Plant Physiol. 2016 May;171(1):452-67 [PMID: 26966169]
  51. BMC Plant Biol. 2011 Jan 12;11:10 [PMID: 21226959]
  52. Genes Dev. 2016 Jan 1;30(1):78-91 [PMID: 26728554]
  53. J Plant Physiol. 2011 Nov 1;168(16):1952-9 [PMID: 21807436]
  54. Plant Physiol. 1978 Mar;61(3):394-7 [PMID: 16660300]
  55. Science. 2006 Nov 24;314(5803):1298-301 [PMID: 17124321]
  56. J Exp Bot. 2000 Feb;51 Spec No:447-58 [PMID: 10938853]
  57. Plant Cell. 2007 May;19(5):1649-64 [PMID: 17513504]
  58. Plant Cell. 1995 Jul;7(7):1085-1097 [PMID: 12242399]
  59. Planta. 1999 Aug 12;209(2):213-220 [PMID: 10436224]
  60. Plant J. 2006 Nov;48(3):414-26 [PMID: 17052324]
  61. Plant Physiol. 2013 Mar;161(3):1202-16 [PMID: 23296688]
  62. Plant Cell Physiol. 2015 Dec;56(12):2325-39 [PMID: 26443376]
  63. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  64. Nucleic Acids Res. 2011 Jan;39(Database issue):D1141-8 [PMID: 21045061]
  65. Plant Physiol. 1980 Feb;65(2):340-5 [PMID: 16661186]
  66. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4718-23 [PMID: 8643469]
  67. Science. 2003 Feb 7;299(5608):902-6 [PMID: 12574634]
  68. J Exp Bot. 2008;59(3):667-80 [PMID: 18296429]
  69. New Phytol. 2012 May;194(3):732-40 [PMID: 22404536]
  70. J Exp Bot. 2014 Jul;65(14):3783-98 [PMID: 24470467]
  71. J Integr Plant Biol. 2015 Jun;57(6):562-76 [PMID: 25146897]
  72. Tree Physiol. 2008 Jan;28(1):123-32 [PMID: 17938121]

MeSH Term

Chlorophyll
Edible Grain
Gene Expression Profiling
Gene Expression Regulation, Plant
Models, Biological
Nitrogen
Oryza
Photosynthesis
Plant Leaves
Plant Physiological Phenomena
RNA, Messenger
Transcriptome

Chemicals

RNA, Messenger
Chlorophyll
Nitrogen