A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak virus.

T Amuge, D K Berger, M S Katari, A A Myburg, S L Goldman, M E Ferguson
Author Information
  1. T Amuge: National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda.
  2. D K Berger: Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. ORCID
  3. M S Katari: Center for Genomics and Systems Biology, New York University, New York, USA.
  4. A A Myburg: Genetics Department, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa. ORCID
  5. S L Goldman: Center for Genomics and Systems Biology, New York University, New York, USA.
  6. M E Ferguson: International Institute of Tropical Agriculture (IITA), Nairobi, Kenya. M.Ferguson@cgiar.org. ORCID

Abstract

A time-course transcriptome analysis of two cassava varieties that are either resistant or susceptible to cassava brown streak disease (CBSD) was conducted using RNASeq, after graft inoculation with Ugandan cassava brown streak virus (UCBSV). From approximately 1.92 billion short reads, the largest number of differentially expressed genes (DEGs) was obtained in the resistant (Namikonga) variety at 2 days after grafting (dag) (3887 DEGs) and 5 dag (4911 DEGs). At the same time points, several defense response genes (encoding LRR-containing, NBARC-containing, pathogenesis-related, late embryogenesis abundant, selected transcription factors, chaperones, and heat shock proteins) were highly expressed in Namikonga. Also, defense-related GO terms of 'translational elongation', 'translation factor activity', 'ribosomal subunit' and 'phosphorelay signal transduction', were overrepresented in Namikonga at these time points. More reads corresponding to UCBSV sequences were recovered from the susceptible variety (Albert) (733 and 1660 read counts per million (cpm)) at 45 dag and 54 dag compared to Namikonga (10 and 117 cpm respectively). These findings suggest that Namikonga's resistance involves restriction of multiplication of UCBSV within the host. These findings can be used with other sources of evidence to identify candidate genes and biomarkers that would contribute substantially to knowledge-based resistance breeding.

References

  1. PLoS One. 2014 Jul 10;9(7):e102067 [PMID: 25010573]
  2. Nature. 1959 Jun 6;183(4675):1588-9 [PMID: 13666823]
  3. Mol Biol Rep. 2010 Feb;37(2):995-1001 [PMID: 19728144]
  4. BMC Res Notes. 2013 Dec 06;6:516 [PMID: 24314370]
  5. Mol Plant Pathol. 2007 Mar;8(2):223-31 [PMID: 20507494]
  6. Eur J Cell Biol. 2010 Feb-Mar;89(2-3):270-2 [PMID: 19944478]
  7. Plant Physiol. 2010 Feb;152(2):500-15 [PMID: 20007449]
  8. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  9. J Exp Bot. 2010 Jul;61(12):3259-71 [PMID: 20511278]
  10. Biochem J. 2005 May 15;388(Pt 1):151-7 [PMID: 15631617]
  11. Mol Plant. 2013 May;6(3):959-70 [PMID: 23132142]
  12. Trends Plant Sci. 2006 Jan;11(1):40-5 [PMID: 16343979]
  13. Virol J. 2014 Dec 20;11:216 [PMID: 25526680]
  14. Int J Mol Sci. 2013 Apr 02;14(4):7302-26 [PMID: 23549266]
  15. Biochim Biophys Acta. 2012 Feb;1819(2):120-8 [PMID: 21964328]
  16. J Gen Virol. 2010 May;91(Pt 5):1365-72 [PMID: 20071490]
  17. Virus Res. 2011 Aug;159(2):161-70 [PMID: 21549776]
  18. Plant Sci. 2015 Jun;235:25-36 [PMID: 25900563]
  19. Plant Physiol Biochem. 2008 Nov;46(11):941-50 [PMID: 18674922]
  20. PLoS One. 2008 Apr 30;3(4):e2119 [PMID: 18446235]
  21. Front Plant Sci. 2014 Jun 27;5:307 [PMID: 25018765]
  22. J Exp Zool A Ecol Genet Physiol. 2007 Jan 1;307(1):62-6 [PMID: 17109393]
  23. BMC Genomics. 2008 Mar 04;9:118 [PMID: 18318901]
  24. Nat Biotechnol. 2016 May;34(5):562-70 [PMID: 27088722]
  25. Sci Rep. 2015 Jan 23;5:7981 [PMID: 25613640]
  26. Plant Cell Rep. 2010 May;29(5):419-36 [PMID: 20204373]
  27. Annu Rev Phytopathol. 2005;43:581-621 [PMID: 16078896]
  28. PLoS One. 2012;7(6):e39169 [PMID: 22723957]
  29. Science. 2002 May 31;296(5573):1650-2 [PMID: 12040183]
  30. J Gen Virol. 1998 Jan;79 ( Pt 1):167-76 [PMID: 9460939]
  31. Curr Biol. 2006 Jun 6;16(11):1116-22 [PMID: 16753566]
  32. Dev Cell. 2010 Aug 17;19(2):284-95 [PMID: 20708590]
  33. Plant Signal Behav. 2015;10(6):e970410 [PMID: 25482800]
  34. Arch Virol. 2009;154(2):353-9 [PMID: 19184340]
  35. Plant Physiol. 2000 Aug;123(4):1375-86 [PMID: 10938355]
  36. Plant Biotechnol J. 2007 Jul;5(4):526-36 [PMID: 17511813]
  37. Sci Rep. 2016 Nov 03;6:36164 [PMID: 27808114]
  38. Trends Plant Sci. 2008 Feb;13(2):85-92 [PMID: 18262459]
  39. Curr Opin Plant Biol. 2007 Aug;10(4):366-71 [PMID: 17644023]
  40. Curr Opin Struct Biol. 2003 Feb;13(1):56-63 [PMID: 12581660]
  41. Trop Plant Biol. 2012 Mar;5(1):88-94 [PMID: 22523606]
  42. Curr Biol. 2002 Jun 25;12(12):1046-51 [PMID: 12123581]
  43. Mol Plant Pathol. 2011 Jan;12(1):31-41 [PMID: 21118347]
  44. Plant Cell. 2013 Aug;25(8):2925-43 [PMID: 23922206]
  45. J Exp Bot. 2014 Mar;65(4):1095-109 [PMID: 24420577]
  46. Nat Biotechnol. 2013 Nov;31(11):1015-22 [PMID: 24037425]
  47. Plant Cell. 2005 Jun;17(6):1829-38 [PMID: 15879560]
  48. Phytochem Anal. 2010 Sep-Oct;21(5):395-8 [PMID: 20135710]
  49. Plant J. 2002 Dec;32(6):1067-75 [PMID: 12492847]
  50. Plant Mol Biol. 2004 Nov;56(5):689-703 [PMID: 15803408]
  51. Biochem Biophys Res Commun. 2006 Sep 15;348(1):56-61 [PMID: 16875677]
  52. Plant J. 2006 Nov;48(3):452-62 [PMID: 17026540]
  53. Annu Rev Biochem. 1999;68:913-63 [PMID: 10872469]
  54. ScientificWorldJournal. 2015;2015:807560 [PMID: 25879071]
  55. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  56. Cell Host Microbe. 2011 Feb 17;9(2):137-46 [PMID: 21320696]
  57. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  58. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  59. Plant Physiol. 2009 Oct;151(2):936-48 [PMID: 19700558]
  60. Plant Physiol. 2009 Aug;150(4):1648-55 [PMID: 19420325]
  61. Annu Rev Genomics Hum Genet. 2009;10:135-51 [PMID: 19715439]
  62. Plant Dis. 2007 Jan;91(1):24-29 [PMID: 30781061]
  63. J Virol Methods. 2010 Nov;169(2):296-304 [PMID: 20691215]
  64. J Virol Methods. 2011 Feb;171(2):394-400 [PMID: 20923689]
  65. Arch Virol. 2010 Mar;155(3):429-33 [PMID: 20094895]
  66. Plant J. 2004 Jan;37(2):186-98 [PMID: 14690503]
  67. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  68. Theor Appl Genet. 2012 Mar;124(4):685-95 [PMID: 22069119]
  69. New Phytol. 2009;183(1):190-199 [PMID: 19344475]
  70. BMC Plant Biol. 2013 May 29;13:85 [PMID: 23718541]
  71. Adv Virus Res. 2009;75:119-59 [PMID: 20109665]
  72. Mol Genet Genomics. 2005 Nov;274(4):346-53 [PMID: 15971038]
  73. PLoS One. 2012;7(6):e38584 [PMID: 22685587]
  74. FEBS Lett. 2004 Nov 5;577(1-2):21-6 [PMID: 15527756]
  75. PLoS Pathog. 2012;8(11):e1003026 [PMID: 23209407]
  76. FASEB J. 2004 Aug;18(11):1169-75 [PMID: 15284216]
  77. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  78. Genome Biol. 2013;14(9):R95 [PMID: 24020486]
  79. PLoS One. 2011 Jan 24;6(1):e15873 [PMID: 21283665]
  80. Trends Biochem Sci. 2001 Jun;26(6):369-76 [PMID: 11406410]
  81. Mol Biol Rep. 2012 Mar;39(3):2883-92 [PMID: 21681426]
  82. Virology. 2014 Jan 20;449:207-14 [PMID: 24418554]
  83. PLoS One. 2014 May 20;9(5):e96642 [PMID: 24846209]
  84. Neuropathol Appl Neurobiol. 2006 Oct;32(5):492-504 [PMID: 16972883]
  85. Annu Rev Phytopathol. 2006;44:135-62 [PMID: 16602946]
  86. Plant Physiol. 2003 Jul;132(3):1272-82 [PMID: 12857809]
  87. Virology. 1970 Feb;40(2):190-211 [PMID: 4191688]
  88. Cell Host Microbe. 2011 Mar 17;9(3):187-199 [PMID: 21402358]
  89. Mol Plant Microbe Interact. 2012 Jan;25(1):107-18 [PMID: 21970693]
  90. Biochem Biophys Res Commun. 2005 May 27;331(1):325-32 [PMID: 15929202]
  91. J Virol Methods. 2012 Jan;179(1):176-84 [PMID: 22080852]
  92. Plant J. 2007 Aug;51(4):617-30 [PMID: 17587305]
  93. Silence. 2012 May 31;3(1):5 [PMID: 22650989]
  94. Adv Virol. 2012;2012:795697 [PMID: 22454639]
  95. EMBO J. 2009 Apr 8;28(7):926-36 [PMID: 19229294]

MeSH Term

Disease Resistance
Gene Expression Profiling
Host-Pathogen Interactions
Manihot
Plant Diseases
Potyviridae
Time Factors
Uganda

Word Cloud

Created with Highcharts 10.0.0cassavaNamikongadagbrownstreakUCBSVgenesDEGstimetranscriptomeanalysisvarietiesresistantsusceptibleUgandanvirusreadsexpressedvarietypointsfindingsresistancetime-coursetwoeitherdiseaseCBSDconductedusingRNASeqgraftinoculationapproximately192billionshortlargestnumberdifferentiallyobtained2daysgrafting388754911severaldefenseresponseencodingLRR-containingNBARC-containingpathogenesis-relatedlateembryogenesisabundantselectedtranscriptionfactorschaperonesheatshockproteinshighlyAlsodefense-relatedGOterms'translationalelongation''translationfactoractivity''ribosomalsubunit''phosphorelaysignaltransduction'overrepresentedcorrespondingsequencesrecoveredAlbert7331660readcountspermillioncpm4554compared10117 cpmrespectivelysuggestNamikonga'sinvolvesrestrictionmultiplicationwithinhostcanusedsourcesevidenceidentifycandidatebiomarkerscontributesubstantiallyknowledge-basedbreedingseriesManihotesculentaCrantzchallenged

Similar Articles

Cited By