Strong Electro-Optic Effect and Spontaneous Domain Formation in Self-Assembled Peptide Structures.

Barak Gilboa, Clément Lafargue, Amir Handelman, Linda J W Shimon, Gil Rosenman, Joseph Zyss, Tal Ellenbogen
Author Information
  1. Barak Gilboa: Department of Physical Electronics Fleischman Faculty of Engineering Tel-Aviv University Tel-Aviv 69978 Israel. ORCID
  2. Clément Lafargue: Laboratoire de Photonique Quantique et Moléculaire (LPQM UMR CNRS 8537) Ecole Normale Supérieure de Cachan Université Paris-Saclay 67 Avenue du Président Wilson 94235 Cachan France.
  3. Amir Handelman: Faculty of Engineering Department of Electrical Engineering Holon Institute of Technology (HIT)52 Golumb St. Holon 5810201 Israel.
  4. Linda J W Shimon: Department of Chemical Research Support Weizmann Institute of Science Rehovot 76100 Israel.
  5. Gil Rosenman: Department of Physical Electronics Fleischman Faculty of Engineering Tel-Aviv University Tel-Aviv 69978 Israel.
  6. Joseph Zyss: Laboratoire de Photonique Quantique et Moléculaire (LPQM UMR CNRS 8537) Ecole Normale Supérieure de Cachan Université Paris-Saclay 67 Avenue du Président Wilson 94235 Cachan France.
  7. Tal Ellenbogen: Department of Physical Electronics Fleischman Faculty of Engineering Tel-Aviv University Tel-Aviv 69978 Israel.

Abstract

Short peptides made from repeating units of phenylalanine self-assemble into a remarkable variety of micro- and nanostructures including tubes, tapes, spheres, and fibrils. These bio-organic structures are found to possess striking mechanical, electrical, and optical properties, which are rarely seen in organic materials, and are therefore shown useful for diverse applications including regenerative medicine, targeted drug delivery, and biocompatible fluorescent probes. Consequently, finding new optical properties in these materials can significantly advance their practical use, for example, by allowing new ways to visualize, manipulate, and utilize them in new, in vivo, sensing applications. Here, by leveraging a unique electro-optic phase microscopy technique, combined with traditional structural analysis, it is measured in di- and triphenylalanine peptide structures a surprisingly large electro-optic response of the same order as the best performing inorganic crystals. In addition, spontaneous domain formation is observed in triphenylalanine tapes, and the origin of their electro-optic activity is unveiled to be related to a porous triclinic structure, with extensive antiparallel beta-sheet arrangement. The strong electro-optic response of these porous peptide structures with the capability of hosting guest molecules opens the door to create new biocompatible, environmental friendly functional materials for electro-optic applications, including biomedical imaging, sensing, and optical manipulation.

Keywords

References

  1. Chem Commun (Camb). 2012 Jan 4;48(1):26-33 [PMID: 22080255]
  2. Adv Sci (Weinh). 2017 May 11;4(9):1700052 [PMID: 28932664]
  3. Science. 2002 Jul 19;297(5580):353-6 [PMID: 12130773]
  4. Langmuir. 2016 Mar 29;32(12):2847-62 [PMID: 26496411]
  5. Nat Nanotechnol. 2015 Apr;10(4):353-60 [PMID: 25775151]
  6. Nanoscale. 2014 Mar 7;6(5):2800-11 [PMID: 24468750]
  7. Biopolymers. 2009;92(3):164-72 [PMID: 19226515]
  8. Angew Chem Int Ed Engl. 2012 Jan 9;51(2):517-20 [PMID: 21976303]
  9. Biophys J. 2009 Jun 17;96(12):5020-9 [PMID: 19527662]
  10. Opt Lett. 2006 May 15;31(10):1468-70 [PMID: 16642141]
  11. Chem Commun (Camb). 2006 Jun 14;(22):2332-4 [PMID: 16733570]
  12. Nat Nanotechnol. 2016 Jan;11(1):95-102 [PMID: 26524396]
  13. ACS Nano. 2014 Feb 25;8(2):1243-53 [PMID: 24422499]
  14. Angew Chem Int Ed Engl. 2013 Feb 11;52(7):2055-9 [PMID: 23307702]
  15. Science. 1997 Jun 27;276(5321):2045-7 [PMID: 9197268]
  16. Biochemistry. 2000 Mar 14;39(10):2552-63 [PMID: 10704204]
  17. Nat Mater. 2015 Jul;14(7):737-44 [PMID: 26030305]
  18. Nat Nanotechnol. 2016 Apr;11(4):388-94 [PMID: 26751169]
  19. Angew Chem Int Ed Engl. 2010 Dec 17;49(51):9939-42 [PMID: 20878815]
  20. Nat Chem. 2015 Jan;7(1):30-7 [PMID: 25515887]
  21. Nature. 1994 Apr 21;368(6473):756-60 [PMID: 8152488]
  22. Nano Lett. 2006 Aug;6(8):1594-7 [PMID: 16895341]
  23. Appl Opt. 2015 Apr 10;54(11):3412-21 [PMID: 25967332]
  24. Opt Express. 2011 May 9;19(10):9000-7 [PMID: 21643153]
  25. Opt Lett. 2012 Jun 1;37(11):2016-8 [PMID: 22660106]
  26. Curr Med Chem. 2002 Oct;9(19):1725-35 [PMID: 12369883]
  27. Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96 [PMID: 24854788]
  28. ACS Nano. 2010 Feb 23;4(2):610-4 [PMID: 20131852]
  29. Diabetes. 1999 Feb;48(2):241-53 [PMID: 10334297]
  30. Soft Matter. 2012 Jan 4;8(4):1168-1174 [PMID: 36345210]
  31. Chemistry. 2001 Dec 3;7(23):5153-9 [PMID: 11775688]
  32. Science. 2003 Apr 25;300(5619):625-7 [PMID: 12714741]

Word Cloud

Created with Highcharts 10.0.0electro-opticstructuresnewincludingopticalmaterialsapplicationspeptidetapespropertiesbiocompatiblesensingtriphenylalanineresponsedomainformationporousguestmoleculesShortpeptidesmaderepeatingunitsphenylalanineself-assembleremarkablevarietymicro-nanostructurestubesspheresfibrilsbio-organicfoundpossessstrikingmechanicalelectricalrarelyseenorganicthereforeshownusefuldiverseregenerativemedicinetargeteddrugdeliveryfluorescentprobesConsequentlyfindingcansignificantlyadvancepracticaluseexampleallowingwaysvisualizemanipulateutilizevivoleveraginguniquephasemicroscopytechniquecombinedtraditionalstructuralanalysismeasureddi-surprisinglylargeorderbestperforminginorganiccrystalsadditionspontaneousobservedoriginactivityunveiledrelatedtriclinicstructureextensiveantiparallelbeta-sheetarrangementstrongcapabilityhostingopensdoorcreateenvironmentalfriendlyfunctionalbiomedicalimagingmanipulationStrongElectro-OpticEffectSpontaneousDomainFormationSelf-AssembledPeptideStructuresPockelseffectself‐assembly

Similar Articles

Cited By