Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

Martin Enge, H Efsun Arda, Marco Mignardi, John Beausang, Rita Bottino, Seung K Kim, Stephen R Quake
Author Information
  1. Martin Enge: Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA.
  2. H Efsun Arda: Department of Developmental Biology, Stanford University School of Medicine, CA 94305, USA.
  3. Marco Mignardi: Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Information Technology, Uppsala University, Sweden and SciLifeLab, Uppsala, Sweden SE-751 05.
  4. John Beausang: Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA.
  5. Rita Bottino: Institute of Cellular Therapeutics, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA.
  6. Seung K Kim: Department of Developmental Biology, Stanford University School of Medicine, CA 94305, USA.
  7. Stephen R Quake: Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Institute of Cellular Therapeutics, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA. Electronic address: quake@stanford.edu.

Abstract

As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue.

Keywords

References

  1. J Biol Chem. 2011 Feb 25;286(8):6006-16 [PMID: 21169365]
  2. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  3. Cell Metab. 2016 Oct 11;24(4):593-607 [PMID: 27667667]
  4. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  5. Cell Metab. 2016 May 10;23(5):909-20 [PMID: 27133132]
  6. Nature. 2006 Jun 22;441(7096):1011-4 [PMID: 16791200]
  7. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3467-72 [PMID: 18299573]
  8. Mutat Res. 2005 Apr 1;571(1-2):33-42 [PMID: 15748636]
  9. Nature. 2016 Oct 13;538(7624):260-264 [PMID: 27698416]
  10. Diabetologia. 2010 Jan;53(1):128-38 [PMID: 19851748]
  11. Nucleic Acids Res. 2015 Dec 15;43(22):e151 [PMID: 26240388]
  12. Diabetes. 1997 Nov;46(11):1733-42 [PMID: 9356019]
  13. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  14. Curr Protoc Bioinformatics. 2013;43:11.10.1-33 [PMID: 25431634]
  15. FEBS Lett. 2007 Jul 31;581(19):3702-10 [PMID: 17544402]
  16. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  17. EMBO Rep. 2012 Dec;13(12):1123-9 [PMID: 23146897]
  18. Nat Methods. 2013 Sep;10(9):857-60 [PMID: 23852452]
  19. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  20. Mol Cell Oncol. 2016 Mar 10;3(4):e1157667 [PMID: 27652313]
  21. Cell. 2013 Jun 6;153(6):1194-217 [PMID: 23746838]
  22. Free Radic Biol Med. 2009 Jun 15;46(12):1703-7 [PMID: 19362141]
  23. Circulation. 2013 Mar 19;127(11):1229-40, e1-21 [PMID: 23410942]
  24. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90 [PMID: 26060301]
  25. Aging Cell. 2007 Dec;6(6):775-82 [PMID: 17925006]
  26. Cell Rep. 2013 Jan 31;3(1):246-59 [PMID: 23318258]
  27. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3293-8 [PMID: 26951663]
  28. Diabetes Care. 2001 Apr;24(4):733-7 [PMID: 11315839]
  29. Chem Biol. 2001 Apr;8(4):369-78 [PMID: 11325592]
  30. Int J Mol Med. 2015 Dec;36(6):1547-55 [PMID: 26498924]
  31. Am J Physiol Endocrinol Metab. 2003 Jan;284(1):E7-12 [PMID: 12485807]
  32. Nature. 2011 Oct 12;478(7369):349-55 [PMID: 21993628]
  33. Diabetes. 2015 Sep;64(9):3172-81 [PMID: 25931473]
  34. Diabetes. 2016 Oct;65(10):3028-38 [PMID: 27364731]
  35. Mech Ageing Dev. 2004 Oct-Nov;125(10-11):747-53 [PMID: 15541769]
  36. Cell Syst. 2016 Oct 26;3(4):385-394.e3 [PMID: 27693023]
  37. Science. 2015 Oct 2;350(6256):94-98 [PMID: 26430121]
  38. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3578-82 [PMID: 9520408]
  39. Nature. 2013 Aug 22;500(7463):415-21 [PMID: 23945592]
  40. Nat Genet. 2015 Dec;47(12):1402-7 [PMID: 26551669]
  41. Nat Rev Genet. 2016 Mar;17(3):175-88 [PMID: 26806412]
  42. Oncogene. 2001 Apr 30;20(19):2336-46 [PMID: 11402331]
  43. BMC Bioinformatics. 2010 Jul 02;11:367 [PMID: 20598126]
  44. Mutat Res. 1991 May;254(3):281-8 [PMID: 2052015]
  45. Cell. 1993 Dec 31;75(7):1361-70 [PMID: 8269514]
  46. Genome Res. 2003 May;13(5):838-44 [PMID: 12727904]
  47. Nat Genet. 2014 May;46(5):487-91 [PMID: 24728294]
  48. Nature. 2016 May 02;534(7605):47-54 [PMID: 27135926]
  49. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  50. EMBO Rep. 2016 Feb;17(2):178-87 [PMID: 26691212]
  51. J Gerontol. 1965 Apr;20:151-3 [PMID: 14284786]
  52. Front Endocrinol (Lausanne). 2014 Sep 03;5:138 [PMID: 25232350]
  53. Environ Mol Mutagen. 2013 Jan;54(1):44-53 [PMID: 23055242]

Grants

  1. UC4 DK104211/NIDDK NIH HHS
  2. U01 HL099995/NHLBI NIH HHS
  3. U01 HL099999/NHLBI NIH HHS
  4. T32 DK007217/NIDDK NIH HHS
  5. P30 DK020593/NIDDK NIH HHS
  6. P30 DK116074/NIDDK NIH HHS

MeSH Term

Adult
Aging
Cellular Senescence
Child
Child, Preschool
Humans
Infant
Middle Aged
Mutation
Pancreas
Polymorphism, Single Nucleotide
Sequence Analysis, RNA
Single-Cell Analysis
Transcription, Genetic