Estimation of multiple networks in Gaussian mixture models.

Chen Gao, Yunzhang Zhu, Xiaotong Shen, Wei Pan
Author Information
  1. Chen Gao: Division of Biostatistics, School of Public Health, University of Minnesota.
  2. Yunzhang Zhu: Department of Statistics, Ohio State University.
  3. Xiaotong Shen: School of Statistics, University of Minnesota.
  4. Wei Pan: Division of Biostatistics, School of Public Health, University of Minnesota.

Abstract

We aim to estimate multiple networks in the presence of sample heterogeneity, where the independent samples (i.e. observations) may come from different and unknown populations or distributions. Specifically, we consider penalized estimation of multiple precision matrices in the framework of a Gaussian mixture model. A major innovation is to take advantage of the commonalities across the multiple precision matrices through possibly nonconvex fusion regularization, which for example makes it possible to achieve simultaneous discovery of unknown disease subtypes and detection of differential gene (dys)regulations in functional genomics. We embed in the EM algorithm one of two recently proposed methods for estimating multiple precision matrices in Gaussian graphical models. We demonstrate the feasibility and potential usefulness of the proposed methods in an application to glioblastoma subtype discovery and differential gene network analysis with a microarray gene expression data set. We also conduct realistic simulation studies to evaluate and compare the performance of various methods.

Keywords

References

  1. Electron J Stat. 2009 Jan 1;3:1473-1496 [PMID: 20463857]
  2. Cancer Cell. 2010 Jan 19;17(1):98-110 [PMID: 20129251]
  3. J R Stat Soc Series B Stat Methodol. 2014 Mar;76(2):373-397 [PMID: 24817823]
  4. Biostatistics. 2008 Jul;9(3):432-41 [PMID: 18079126]
  5. Biometrics. 2008 Jun;64(2):440-8 [PMID: 17970821]
  6. J Am Stat Assoc. 2011;107(500):1372-1384 [PMID: 26246646]
  7. J Am Stat Assoc. 2012 Jan 1;107(497):223-232 [PMID: 22736876]
  8. Cell. 2013 Oct 10;155(2):462-77 [PMID: 24120142]
  9. JAMA Neurol. 2014 Oct;71(10):1319-25 [PMID: 25155243]
  10. Neuroimage. 2010 Apr 15;50(3):935-49 [PMID: 20079441]
  11. J Clin Oncol. 2015 Feb 20;33(6):e27-31 [PMID: 24616312]
  12. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4240-5 [PMID: 10200246]
  13. Bioinformatics. 2006 Oct 1;22(19):2405-12 [PMID: 16882653]
  14. J Cell Sci. 2002 Feb 1;115(Pt 3):553-62 [PMID: 11861762]
  15. Comput Biol Med. 2008 Mar;38(3):283-93 [PMID: 18061589]
  16. Nature. 2008 Oct 23;455(7216):1061-8 [PMID: 18772890]
  17. Science. 2004 Feb 6;303(5659):799-805 [PMID: 14764868]
  18. J Mach Learn Res. 2014 May;15(May):1713-1750 [PMID: 25620892]
  19. Cancer Res. 2002 Nov 15;62(22):6764-9 [PMID: 12438278]
  20. PLoS One. 2013 Jun 17;8(6):e66256 [PMID: 23799085]
  21. BMC Bioinformatics. 2008 Nov 27;9:497 [PMID: 19038021]
  22. Histol Histopathol. 2015 Oct;30(10):1155-60 [PMID: 26147657]
  23. Nat Genet. 2014 May;46(5):510-515 [PMID: 24705253]
  24. J Am Stat Assoc. 2015 Mar 1;110(509):159-174 [PMID: 26078481]
  25. J R Stat Soc Series B Stat Methodol. 2016 Mar 1;78(2):487-504 [PMID: 26924939]
  26. J Mach Learn Res. 2014 Jan 1;15(1):445-488 [PMID: 25309137]
  27. Electron J Stat. 2008;2:168-212 [PMID: 19920875]
  28. J Am Stat Assoc. 2014 Oct;109(508):1683-1696 [PMID: 25642006]
  29. Biometrika. 2011 Mar;98(1):1-15 [PMID: 23049124]

Grants

  1. R01 GM081535/NIGMS NIH HHS
  2. R01 GM113250/NIGMS NIH HHS
  3. R01 HL105397/NHLBI NIH HHS
  4. R01 HL116720/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0multipleGaussiangeneprecisionmatricesdiscoverymethodsnetworksunknownmixturemodeldifferentialproposedgraphicalmodelsglioblastomasubtypeexpressionaimestimatepresencesampleheterogeneityindependentsamplesieobservationsmaycomedifferentpopulationsdistributionsSpecificallyconsiderpenalizedestimationframeworkmajorinnovationtakeadvantagecommonalitiesacrosspossiblynonconvexfusionregularizationexamplemakespossibleachievesimultaneousdiseasesubtypesdetectiondysregulationsfunctionalgenomicsembedEMalgorithmonetworecentlyestimatingdemonstratefeasibilitypotentialusefulnessapplicationnetworkanalysismicroarraydatasetalsoconductrealisticsimulationstudiesevaluatecompareperformancevariousEstimationDiseasemodel-basedclusteringnon-convexpenalty

Similar Articles

Cited By