Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing.

Hongjie Li, Felix Horns, Bing Wu, Qijing Xie, Jiefu Li, Tongchao Li, David J Luginbuhl, Stephen R Quake, Liqun Luo
Author Information
  1. Hongjie Li: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
  2. Felix Horns: Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA.
  3. Bing Wu: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
  4. Qijing Xie: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA.
  5. Jiefu Li: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
  6. Tongchao Li: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
  7. David J Luginbuhl: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
  8. Stephen R Quake: Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA. Electronic address: quake@stanford.edu.
  9. Liqun Luo: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Electronic address: lluo@stanford.edu.

Abstract

The definition of neuronal type and how it relates to the transcriptome are open questions. Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: different PN classes target dendrites to distinct olfactory glomeruli, while PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomes of most PN classes and unequivocally mapped transcriptomes to specific olfactory function for six classes. Transcriptomes of closely related PN classes exhibit the largest differences during circuit assembly but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Transcription factors and cell-surface molecules are the most differentially expressed genes between classes and are highly informative in encoding cell identity, enabling us to identify a new lineage-specific transcription factor that instructs PN dendrite targeting. These findings establish that neuronal transcriptomic identity corresponds with anatomical and physiological identity defined by connectivity and function.

Keywords

References

  1. Nat Protoc. 2006;1(4):2110-5 [PMID: 17487202]
  2. J Comp Neurol. 1999 Mar 22;405(4):543-52 [PMID: 10098944]
  3. Nat Neurosci. 2009 Dec;12(12):1542-50 [PMID: 19915565]
  4. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  5. Nat Neurosci. 2015 Jan;18(1):145-53 [PMID: 25420068]
  6. Annu Rev Neurosci. 2013 Jul 8;36:217-41 [PMID: 23841839]
  7. Cell. 2002 Apr 19;109(2):243-55 [PMID: 12007410]
  8. Neuron. 2007 Dec 20;56(6):963-78 [PMID: 18093520]
  9. Neural Dev. 2010 Apr 06;5:10 [PMID: 20370889]
  10. J Neurobiol. 1997 May;32(5):443-56 [PMID: 9110257]
  11. Nat Neurosci. 2015 May;18(5):637-46 [PMID: 25734491]
  12. Nature. 2003 Oct 16;425(6959):737-41 [PMID: 14562106]
  13. Nat Biotechnol. 2016 Feb;34(2):175-183 [PMID: 26689544]
  14. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  15. Development. 1995 Oct;121(10):3233-43 [PMID: 7588058]
  16. Cell. 2016 Aug 25;166(5):1308-1323.e30 [PMID: 27565351]
  17. Nat Neurosci. 2009 Sep;12(9):1136-44 [PMID: 19684589]
  18. Cell. 1997 Feb 21;88(4):445-57 [PMID: 9038336]
  19. Cell Rep. 2012 Oct 25;2(4):991-1001 [PMID: 23063364]
  20. Dev Biol. 2005 Feb 15;278(2):607-18 [PMID: 15680373]
  21. Nature. 2012 Mar 18;484(7393):201-7 [PMID: 22425994]
  22. Annu Rev Neurosci. 2007;30:505-33 [PMID: 17506643]
  23. IEEE Trans Neural Netw. 2002;13(1):143-59 [PMID: 18244416]
  24. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90 [PMID: 26060301]
  25. Cell. 2003 Jan 24;112(2):157-67 [PMID: 12553905]
  26. Cell Rep. 2016 Jul 26;16(4):1126-1137 [PMID: 27425622]
  27. Nat Neurosci. 2016 Feb;19(2):335-46 [PMID: 26727548]
  28. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5222-31 [PMID: 27531958]
  29. Neuron. 1999 Mar;22(3):451-61 [PMID: 10197526]
  30. Cell. 2010 Apr 30;141(3):536-48 [PMID: 20434990]
  31. Genetics. 2014 Jan;196(1):17-29 [PMID: 24395823]
  32. Elife. 2014 Oct 13;3:e03726 [PMID: 25310239]
  33. Cell. 2007 Mar 23;128(6):1187-203 [PMID: 17382886]
  34. Neuron. 2015 Mar 4;85(5):1013-28 [PMID: 25741726]
  35. Science. 2008 Nov 7;322(5903):904-9 [PMID: 18988843]
  36. Science. 2015 Mar 6;347(6226):1138-42 [PMID: 25700174]
  37. Neuron. 2008 Sep 25;59(6):972-85 [PMID: 18817735]
  38. Neuron. 2014 Jul 16;83(2):388-403 [PMID: 25033182]
  39. J Neurosci. 2009 Apr 15;29(15):4768-81 [PMID: 19369546]
  40. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  41. Cell Rep. 2015 Mar 3;10(8):1410-21 [PMID: 25732830]
  42. Curr Biol. 2007 Feb 6;17(3):278-85 [PMID: 17276922]
  43. PLoS Biol. 2012;10(11):e1001425 [PMID: 23185131]
  44. Neuron. 2013 Sep 4;79(5):917-31 [PMID: 24012005]
  45. Development. 2004 Jan;131(1):117-30 [PMID: 14645123]
  46. Curr Opin Neurobiol. 2017 Feb;42:9-16 [PMID: 27888678]
  47. Cell. 2015 Dec 17;163(7):1756-69 [PMID: 26687360]
  48. Nature. 2001 Nov 8;414(6860):204-8 [PMID: 11719930]
  49. PLoS One. 2011;6(7):e21800 [PMID: 21789182]
  50. Elife. 2017 May 22;6: [PMID: 28530904]
  51. PLoS Biol. 2010 Aug 24;8(8):null [PMID: 20808769]

Grants

  1. R01 DC005982/NIDCD NIH HHS

MeSH Term

Animals
Brain
Cluster Analysis
Dendrites
Drosophila melanogaster
Gene Expression Profiling
Neurons
Olfactory Bulb
Organ Specificity
Pupa
Sequence Analysis, RNA
Single-Cell Analysis
Transcription Factors

Chemicals

Transcription Factors