Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch.

Getu Beyene, Felix R Solomon, Raj D Chauhan, Eliana Gaitán-Solis, Narayanan Narayanan, Jackson Gehan, Dimuth Siritunga, Robyn L Stevens, John Jifon, Joyce Van Eck, Edward Linsler, Malia Gehan, Muhammad Ilyas, Martin Fregene, Richard T Sayre, Paul Anderson, Nigel J Taylor, Edgar B Cahoon
Author Information
  1. Getu Beyene: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  2. Felix R Solomon: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  3. Raj D Chauhan: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  4. Eliana Gaitán-Solis: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  5. Narayanan Narayanan: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  6. Jackson Gehan: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  7. Dimuth Siritunga: Department of Biology, University of Puerto Rico, Mayaguez, Puerto Rico.
  8. Robyn L Stevens: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  9. John Jifon: Department of Horticultural Sciences, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA.
  10. Joyce Van Eck: Boyce Thompson Institute, Ithaca, NY, USA.
  11. Edward Linsler: Boyce Thompson Institute, Ithaca, NY, USA.
  12. Malia Gehan: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  13. Muhammad Ilyas: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  14. Martin Fregene: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  15. Richard T Sayre: New Mexico Consortium, Los Alamos National Laboratory, Los Alamos, NM, USA.
  16. Paul Anderson: Donald Danforth Plant Science Center, St. Louis, MO, USA.
  17. Nigel J Taylor: Donald Danforth Plant Science Center, St. Louis, MO, USA. ORCID
  18. Edgar B Cahoon: Donald Danforth Plant Science Center, St. Louis, MO, USA. ORCID

Abstract

Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A β-carotene. In this study, β-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 μg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-β-carotene, the most nutritionally efficacious carotenoid. β-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in β-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between β-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between β-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production.

Keywords

Associated Data

GENBANK | JN374901; JN374902

References

  1. Microbiol Mol Biol Rev. 2003 Jun;67(2):213-25, table of contents [PMID: 12794190]
  2. Plant Biotechnol J. 2017 Feb;15(2):227-236 [PMID: 27496594]
  3. Arabidopsis Book. 2013 Nov 01;11:e0166 [PMID: 24273463]
  4. Front Plant Sci. 2017 Jan 18;7:2052 [PMID: 28149300]
  5. Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11040-5 [PMID: 27621466]
  6. Annu Rev Nutr. 2002;22:483-504 [PMID: 12055355]
  7. Anal Biochem. 1987 Dec;167(2):270-8 [PMID: 3442322]
  8. Nat Biotechnol. 2000 Jun;18(6):666-9 [PMID: 10835607]
  9. J Exp Bot. 2012 Oct;63(16):5979-89 [PMID: 23048129]
  10. Plant Cell. 2010 Oct;22(10):3348-56 [PMID: 20889914]
  11. J Agric Food Chem. 2007 Mar 07;55(5):1674-8 [PMID: 17288445]
  12. Science. 2000 Jan 14;287(5451):303-5 [PMID: 10634784]
  13. PLoS One. 2007 Apr 04;2(4):e350 [PMID: 17406674]
  14. Plant Biotechnol J. 2015 May;13(4):590-600 [PMID: 25400247]
  15. J Agric Food Chem. 2013 Jun 19;61(24):5764-71 [PMID: 23692305]
  16. Curr Opin Plant Biol. 2008 Apr;11(2):166-70 [PMID: 18314378]
  17. Plant Cell Rep. 2011 May;30(5):779-87 [PMID: 21212961]
  18. Nat Methods. 2017 Jul;14(7):687-690 [PMID: 28581496]
  19. Breed Sci. 2016 Jun;66(3):434-43 [PMID: 27436954]
  20. Breed Sci. 2016 Sep;66(4):627-635 [PMID: 27795688]
  21. BMC Syst Biol. 2011;5 Suppl 3:S1 [PMID: 22784615]
  22. FASEB J. 1996 May;10(7):690-701 [PMID: 8635686]
  23. Nat Biotechnol. 2016 May;34(5):562-70 [PMID: 27088722]
  24. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  25. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  26. Plant J. 1999 Nov;20(4):401-412X [PMID: 10607293]
  27. Mol Plant Pathol. 2016 Sep;17(7):1095-110 [PMID: 26662210]
  28. Plant Biotechnol J. 2017 Apr;15(4):520-532 [PMID: 27734628]
  29. Plant Physiol. 2012 Aug;159(4):1396-407 [PMID: 22711743]
  30. BMC Plant Biol. 2016 Jun 10;16(1):133 [PMID: 27286876]
  31. Nutrients. 2012 Dec 19;4(12):2069-96 [PMID: 23363998]
  32. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12350-5 [PMID: 11027301]
  33. Acta Physiol Plant. 2017;39(4):91 [PMID: 28316353]
  34. Br J Nutr. 2009 Aug;102(3):342-9 [PMID: 19138445]
  35. Br J Nutr. 2014 Jun 28;111(12):2153-66 [PMID: 24513222]
  36. Phytochemistry. 2012 Mar;75:50-9 [PMID: 22226037]
  37. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1092-7 [PMID: 11805345]
  38. Plant Cell. 2006 Dec;18(12):3594-605 [PMID: 17172359]
  39. Compr Rev Food Sci Food Saf. 2009 Jul;8(3):181-194 [PMID: 33467798]
  40. Curr Opin Biotechnol. 2017 Apr;44:169-180 [PMID: 28254681]
  41. Nat Commun. 2014 Oct 10;5:5110 [PMID: 25300236]
  42. Annu Rev Plant Biol. 2011;62:251-72 [PMID: 21526968]
  43. J Nutr. 2010 Dec;140(12):2268S-2285S [PMID: 20980645]
  44. Glob Food Sec. 2017 Mar;12:49-58 [PMID: 28580239]
  45. Sci Rep. 2016 Feb 26;6:22181 [PMID: 26916792]
  46. J Exp Bot. 2011 May;62(8):2615-32 [PMID: 21289079]
  47. Nat Biotechnol. 2005 Apr;23(4):482-7 [PMID: 15793573]
  48. Plant Mol Biol. 2004 Nov;56(4):625-41 [PMID: 15669147]
  49. Nat Protoc. 2010 Jun;5(6):986-92 [PMID: 20448544]
  50. J Exp Bot. 2006;57(12):3007-18 [PMID: 16873449]
  51. J Virol Methods. 2011 Oct;177(1):49-54 [PMID: 21756941]
  52. J Agric Food Chem. 2012 Apr 18;60(15):3861-6 [PMID: 22458891]
  53. Plant Mol Biol. 2004 Nov;56(4):481-501 [PMID: 15669146]

MeSH Term

Abscisic Acid
Biofortification
Carbohydrate Metabolism
Carotenoids
Food Storage
Geranylgeranyl-Diphosphate Geranylgeranyltransferase
Manihot
Plant Roots
Plants, Genetically Modified
Solanum tuberosum
Starch
Transferases

Chemicals

Carotenoids
Abscisic Acid
Starch
Transferases
deoxyxylulose-5-phosphate synthase
Geranylgeranyl-Diphosphate Geranylgeranyltransferase

Word Cloud

Created with Highcharts 10.0.0rootscassavastarchβ-carotenestoragedrymattercontentprovitaminStoragemajorincludingsynthaseDXScrtBplantsaccumulatedcarotenoidsrelativenontransgenicdisplayedcorrelationfattysolublesugarsacidreducedgenesmetabolicbiofortificationManihotesculentaCrantzsubsistencecropsub-SaharanAfricacalorierichdeficientessentialmicronutrientsstudyconcentrationsenhancedco-expressiontransgenesdeoxy-d-xylulose-5-phosphatebacterialphytoenemediatedpatatin-type1promoterharvestedfield-grown≤50 μg/gDW15-20-foldincreasesApproximately85%-90%all-trans-β-carotenenutritionallyefficaciouscarotenoidβ-Carotene-accumulatingdelayedonsetpostharvestphysiologicaldeteriorationconstraintlimitingutilizationproductsLargemetabolitechangesdetectedβ-carotene-enhancedsignificantlyinverseobservedreductions50%-60%highestcarotenoid-accumulatingdifferentcultivarsanalysisconfirmedconcomitantreductionincreasedlevelstotalacidstriacylglycerolsabscisicPotatoengineeredco-expresssimilaraccumulationelevatedoiltubersTranscriptomeanalysesrevealedexpressioninvolvedbiosynthesisADP-glucosepyrophosphorylasetransgeniccarotene-accumulatingfindingshighlightunintendedconsequencesstarch-richorganspointstrategiesredirectingfluxrestoreproductionProvitaminenhancesshelflifereducesduealteredcarbonpartitioning

Similar Articles

Cited By (22)