An open experimental database for exploring inorganic materials.

Andriy Zakutayev, Nick Wunder, Marcus Schwarting, John D Perkins, Robert White, Kristin Munch, William Tumas, Caleb Phillips
Author Information
  1. Andriy Zakutayev: Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
  2. Nick Wunder: Computational Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
  3. Marcus Schwarting: Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
  4. John D Perkins: Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
  5. Robert White: Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
  6. Kristin Munch: Computational Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
  7. William Tumas: Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
  8. Caleb Phillips: Computational Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.

Abstract

The use of advanced machine learning algorithms in experimental materials science is limited by the lack of sufficiently large and diverse datasets amenable to data mining. If publicly open, such data resources would also enable materials research by scientists without access to expensive experimental equipment. Here, we report on our progress towards a publicly open High Throughput Experimental Materials (HTEM) Database (htem.nrel.gov). This database currently contains 140,000 sample entries, characterized by structural (100,000), synthetic (80,000), chemical (70,000), and optoelectronic (50,000) properties of inorganic thin film materials, grouped in >4,000 sample entries across >100 materials systems; more than a half of these data are publicly available. This article shows how the HTEM database may enable scientists to explore materials by browsing web-based user interface and an application programming interface. This paper also describes a HTE approach to generating materials data, and discusses the laboratory information management system (LIMS), that underpin HTEM database. Finally, this manuscript illustrates how advanced machine learning algorithms can be adopted to materials science problems using this open data resource.

References

  1. Acta Crystallogr B. 2002 Jun;58(Pt 3 Pt 1):364-9 [PMID: 12037357]
  2. Sci Data. 2016 Mar 15;3:160018 [PMID: 26978244]
  3. FASEB J. 2013 Apr;27(4):1304-8 [PMID: 23288929]
  4. Sci Data. 2017 Sep 12;4:170127 [PMID: 28895943]
  5. Nature. 2016 May 5;533(7601):22-5 [PMID: 27147015]
  6. Nature. 2016 May 5;533(7601):73-6 [PMID: 27147027]
  7. Nat Mater. 2015 Oct;14(10):973-80 [PMID: 26395941]

Word Cloud

Created with Highcharts 10.0.0materials000dataopendatabaseexperimentalpubliclyHTEMadvancedmachinelearningalgorithmssciencealsoenablescientistssampleentriesinorganicinterfaceuselimitedlacksufficientlylargediversedatasetsamenableminingresourcesresearchwithoutaccessexpensiveequipmentreportprogresstowardsHighThroughputExperimentalMaterialsDatabasehtemnrelgovcurrentlycontains140characterizedstructural100synthetic80chemical70optoelectronic50propertiesthinfilmgrouped>4across>100systemshalfavailablearticleshowsmayexplorebrowsingweb-baseduserapplicationprogrammingpaperdescribesHTEapproachgeneratingdiscusseslaboratoryinformationmanagementsystemLIMSunderpinFinallymanuscriptillustratescanadoptedproblemsusingresourceexploring

Similar Articles

Cited By