The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells.

Arindam Banerjee, Pardis Arvinrad, Matthew Darley, Stéphanie A Laversin, Rachel Parker, Matthew J J Rose-Zerilli, Paul A Townsend, Ramsey I Cutress, Stephen A Beers, Franchesca D Houghton, Charles N Birts, Jeremy P Blaydes
Author Information
  1. Arindam Banerjee: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  2. Pardis Arvinrad: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  3. Matthew Darley: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  4. Stéphanie A Laversin: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  5. Rachel Parker: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  6. Matthew J J Rose-Zerilli: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  7. Paul A Townsend: Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, M20 4QL, UK.
  8. Ramsey I Cutress: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  9. Stephen A Beers: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  10. Franchesca D Houghton: Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  11. Charles N Birts: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
  12. Jeremy P Blaydes: Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.

Abstract

Altered glycolysis is a characteristic of many cancers, and can also be associated with changes in stem cell-like cancer (SCLC) cell populations. We therefore set out to directly examine the effect of glycolysis on SCLC cell phenotype, using a model where glycolysis is stably reduced by adapting the cells to a sugar source other than glucose. Restricting glycolysis using this approach consistently resulted in cells with increased oncogenic potential; including an increase in SCLC cells, proliferation in 3D matrigel, invasiveness, chemoresistance, and altered global gene expression. Tumorigenicity was also markedly increased. SCLC cells exhibited increased dependence upon alternate metabolic pathways. They also became c-KIT dependent, indicating that their apparent state of maturation is regulated by glycolysis. Single-cell mRNA sequencing identified altered networks of metabolic-, stem- and signaling- gene expression within SCLC-enriched populations in response to glycolytic restriction. Therefore, reduced glycolysis, which may occur in niches within tumors where glucose availability is limiting, can promote tumor aggressiveness by increasing SCLC cell populations, but can also introduce novel, potentially exploitable, vulnerabilities in SCLC cells.

Keywords

References

  1. BMC Genomics. 2011 Apr 18;12:196 [PMID: 21501463]
  2. Nat Rev Cancer. 2004 Nov;4(11):891-9 [PMID: 15516961]
  3. Oncotarget. 2014 Nov 30;5(22):11029-37 [PMID: 25415228]
  4. Cancer Sci. 2003 Jun;94(6):515-8 [PMID: 12824876]
  5. Breast Cancer Res Treat. 2005 Mar;90(2):157-63 [PMID: 15803362]
  6. Chem Sci. 2013 Aug 1;4(8):3046-3057 [PMID: 30450179]
  7. Br J Cancer. 2016 Jun 14;114(12):1305-12 [PMID: 27219018]
  8. Cancer Cell. 2006 Dec;10(6):515-27 [PMID: 17157791]
  9. Genes Dev. 2016 Nov 1;30(21):2345-2369 [PMID: 27881599]
  10. Oncogene. 2012 Feb 16;31(7):869-83 [PMID: 21765473]
  11. J Immunol Methods. 2009 Aug 15;347(1-2):70-8 [PMID: 19567251]
  12. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  13. J Biol Chem. 1979 Apr 25;254(8):2669-76 [PMID: 429309]
  14. Nature. 2014 Apr 3;508(7494):108-12 [PMID: 24670634]
  15. Annu Rev Cell Dev Biol. 2011;27:441-64 [PMID: 21985671]
  16. Stem Cell Reports. 2016 Jan 12;6(1):121-36 [PMID: 26771357]
  17. Stem Cell Reports. 2013 Dec 27;2(1):78-91 [PMID: 24511467]
  18. PLoS One. 2013 May 02;8(5):e63419 [PMID: 23658826]
  19. Cancer Cell. 2015 Jan 12;27(1):57-71 [PMID: 25584894]
  20. Sci Signal. 2015 Apr 28;8(374):ra40 [PMID: 25921289]
  21. Genes Dev. 2014 Jun 1;28(11):1143-58 [PMID: 24888586]
  22. Oncotarget. 2015 Mar 30;6(9):6776-93 [PMID: 25686827]
  23. Free Radic Biol Med. 2015 Feb;79:264-8 [PMID: 25450330]
  24. Nat Rev Mol Cell Biol. 2014 Apr;15(4):243-56 [PMID: 24651542]
  25. Stem Cells. 2013 Jan;31(1):23-34 [PMID: 23132831]
  26. Oncotarget. 2014 Jun 30;5(12):4305-19 [PMID: 24946808]
  27. Oncotarget. 2014 Jun 30;5(12):3970-82 [PMID: 24994116]
  28. Nature. 2015 Oct 1;526(7571):131-5 [PMID: 26416748]
  29. Trends Biochem Sci. 2010 Aug;35(8):427-33 [PMID: 20570523]
  30. Cell Metab. 2015 Oct 6;22(4):590-605 [PMID: 26365176]
  31. Cancer Res. 2009 Jun 1;69(11):4918-25 [PMID: 19458066]
  32. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11858-63 [PMID: 16087880]
  33. Nat Methods. 2017 Apr;14(4):381-387 [PMID: 28263961]
  34. Cancer Cell. 2012 Mar 20;21(3):283-96 [PMID: 22439924]
  35. Nature. 2009 Sep 3;461(7260):109-13 [PMID: 19693011]
  36. Cell. 2013 Jun 6;153(6):1239-51 [PMID: 23746840]
  37. Breast Cancer Res. 2008;10(2):R25 [PMID: 18366788]
  38. Biochim Biophys Acta. 2011 Jun;1807(6):552-61 [PMID: 20955683]
  39. Oncotarget. 2015 Aug 28;6(25):21421-7 [PMID: 26093083]
  40. Cell Rep. 2016 Nov 15;17(8):2060-2074 [PMID: 27851968]
  41. Nature. 2013 Oct 10;502(7470):181-2 [PMID: 24108049]
  42. Breast Cancer Res. 2016 May 24;18(1):55 [PMID: 27220421]
  43. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16062-7 [PMID: 21900605]
  44. Cell Death Dis. 2014 Jul 17;5:e1336 [PMID: 25032859]
  45. Oncotarget. 2015 Nov 3;6(34):35141-2 [PMID: 26498352]
  46. J Biol Chem. 2005 Dec 23;280(51):41928-39 [PMID: 16223732]
  47. Stem Cells. 2014 Jul;32(7):1734-45 [PMID: 24497069]
  48. Leuk Res. 2009 Jan;33(1):5-10 [PMID: 18639336]
  49. Genes Dev. 2003 May 15;17(10):1253-70 [PMID: 12756227]
  50. EMBO J. 2017 Feb 1;36(3):252-259 [PMID: 28007895]
  51. Cancer Res. 2005 May 15;65(10):4147-52 [PMID: 15899805]
  52. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1847-52 [PMID: 8700847]
  53. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W305-11 [PMID: 19465376]

Grants

  1. 2014NOVPR341/Breast Cancer Now
  2. MC_PC_15078/Medical Research Council