A Core Regulatory Pathway Controlling Rice Tiller Angle Mediated by the -Dependent Asymmetric Distribution of Auxin.

Ning Zhang, Hong Yu, Hao Yu, Yueyue Cai, Linzhou Huang, Cao Xu, Guosheng Xiong, Xiangbing Meng, Jiyao Wang, Haofeng Chen, Guifu Liu, Yanhui Jing, Yundong Yuan, Yan Liang, Shujia Li, Steven M Smith, Jiayang Li, Yonghong Wang
Author Information
  1. Ning Zhang: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  2. Hong Yu: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  3. Hao Yu: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  4. Yueyue Cai: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  5. Linzhou Huang: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  6. Cao Xu: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  7. Guosheng Xiong: Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. ORCID
  8. Xiangbing Meng: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  9. Jiyao Wang: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  10. Haofeng Chen: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  11. Guifu Liu: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  12. Yanhui Jing: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  13. Yundong Yuan: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  14. Yan Liang: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  15. Shujia Li: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  16. Steven M Smith: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  17. Jiayang Li: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ORCID
  18. Yonghong Wang: State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China yhwang@genetics.ac.cn. ORCID

Abstract

Tiller angle in cereals is a key shoot architecture trait that strongly influences grain yield. Studies in rice () have implicated shoot gravitropism in the regulation of tiller angle. However, the functional link between shoot gravitropism and tiller angle is unknown. Here, we conducted a large-scale transcriptome analysis of rice shoots in response to gravistimulation and identified two new nodes of a shoot gravitropism regulatory gene network that also controls rice tiller angle. We demonstrate that HEAT STRESS TRANSCRIPTION FACTOR 2D (HSFA2D) is an upstream positive regulator of the LAZY1-mediated asymmetric auxin distribution pathway. We also show that two functionally redundant transcription factor genes, () and , are expressed asymmetrically in response to auxin to connect gravitropism responses with the control of rice tiller angle. These findings define upstream and downstream genetic components that link shoot gravitropism, asymmetric auxin distribution, and rice tiller angle. The results highlight the power of the high-temporal-resolution RNA-seq data set and its use to explore further genetic components controlling tiller angle. Collectively, these approaches will identify genes to improve grain yields by facilitating the optimization of plant architecture.

References

  1. BMC Genomics. 2015 Dec 16;16:1067 [PMID: 26673149]
  2. Proc Natl Acad Sci U S A. 1990 May;87(10):3748-52 [PMID: 2339118]
  3. Plant Physiol. 2001 Jan;125(1):252-65 [PMID: 11154334]
  4. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  5. Am J Bot. 2013 Jan;100(1):194-202 [PMID: 23281391]
  6. Plant Cell. 2014 Mar;26(3):1081-93 [PMID: 24642937]
  7. Development. 2017 Sep 1;144(17):3126-3133 [PMID: 28743799]
  8. New Phytol. 2006;170(1):185-93 [PMID: 16539615]
  9. J Genet Genomics. 2015 Feb 20;42(2):71-8 [PMID: 25697101]
  10. J Bioinform Comput Biol. 2015 Feb;13(1):1540009 [PMID: 25666655]
  11. Nat Commun. 2012 Mar 20;3:750 [PMID: 22434193]
  12. Planta. 1992 Nov-Dec;188(4):619-22 [PMID: 11541067]
  13. Cell Stress Chaperones. 2001 Jul;6(3):177-89 [PMID: 11599559]
  14. New Phytol. 2016 Jan;209(1):265-79 [PMID: 26256266]
  15. Plant Physiol. 2004 Sep;136(1):2790-805 [PMID: 15347791]
  16. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W98-103 [PMID: 23632162]
  17. Plant Cell Physiol. 2014 Apr;55(4):811-22 [PMID: 24486761]
  18. Plant Cell Physiol. 2007 May;48(5):678-88 [PMID: 17412736]
  19. Plant Cell. 2009 Mar;21(3):843-60 [PMID: 19276442]
  20. Nat Genet. 2008 Nov;40(11):1360-4 [PMID: 18820699]
  21. PLoS Genet. 2016 Nov 4;12(11):e1006412 [PMID: 27814357]
  22. Front Plant Sci. 2015 Apr 14;6:218 [PMID: 25926839]
  23. Mol Genet Genomics. 2011 Aug;286(2):171-87 [PMID: 21792744]
  24. Curr Opin Plant Biol. 2013 May;16(2):213-20 [PMID: 23466256]
  25. Yi Chuan Xue Bao. 2001;28(1):29-32 [PMID: 11209708]
  26. New Phytol. 2016 Oct;212(1):108-22 [PMID: 27241276]
  27. Plant Physiol. 2013 Nov;163(3):1306-22 [PMID: 24089437]
  28. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18548-53 [PMID: 22042862]
  29. Protoplasma. 2016 Jul;253(4):987-1004 [PMID: 26215561]
  30. Cell Res. 2007 May;17(5):402-10 [PMID: 17468779]
  31. Plant J. 1994 Aug;6(2):271-82 [PMID: 7920717]
  32. Funct Plant Biol. 2014 Feb;42(1):31-41 [PMID: 32480651]
  33. Plant J. 2013 Apr;74(2):267-79 [PMID: 23331961]
  34. Mol Plant. 2015 Aug;8(8):1274-84 [PMID: 25917172]
  35. Plant J. 2007 Dec;52(5):891-8 [PMID: 17908158]
  36. Plant Biotechnol J. 2012 Feb;10(2):139-49 [PMID: 21777365]
  37. PLoS One. 2008;3(10):e3521 [PMID: 18953406]
  38. PLoS Genet. 2017 Mar 6;13(3):e1006649 [PMID: 28264034]
  39. Nat Genet. 2008 Nov;40(11):1365-9 [PMID: 18820696]
  40. Nucleic Acids Res. 2017 Jan 4;45(D1):D18-D24 [PMID: 27899658]
  41. PLoS One. 2013 Sep 05;8(9):e74646 [PMID: 24040303]
  42. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D745-8 [PMID: 16381972]
  43. Curr Opin Plant Biol. 2015 Feb;23:124-31 [PMID: 25597285]
  44. Plant Mol Biol. 2002 Jun-Jul;49(3-4):373-85 [PMID: 12036261]
  45. Plant Cell. 2015 Apr;27(4):1173-84 [PMID: 25841039]
  46. PLoS One. 2011;6(6):e20621 [PMID: 21687735]
  47. Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18 [PMID: 28387199]
  48. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  49. Rice (N Y). 2013 Feb 06;6(1):4 [PMID: 24280374]
  50. Front Plant Sci. 2012 Dec 11;3:274 [PMID: 23248632]
  51. Funct Plant Biol. 2013 Nov;40(11):1137-1146 [PMID: 32481181]
  52. Plant Physiol. 2002 Oct;130(2):720-8 [PMID: 12376639]
  53. Annu Rev Plant Biol. 2008;59:253-79 [PMID: 18444901]
  54. Curr Opin Plant Biol. 2011 Feb;14(1):94-9 [PMID: 21144796]
  55. Plant Physiol. 2013 Jan;161(1):317-29 [PMID: 23124325]
  56. Nucleic Acids Res. 2013 Jan;41(Database issue):D1206-13 [PMID: 23180765]
  57. Am J Bot. 2013 Jan;100(1):91-100 [PMID: 23115136]
  58. PLoS One. 2017 May 25;12(5):e0178177 [PMID: 28542427]
  59. Front Plant Sci. 2017 Jul 27;8:1304 [PMID: 28798760]
  60. Front Plant Sci. 2015 Dec 24;6:1176 [PMID: 26734055]
  61. Planta. 2014 Jul;240(1):161-75 [PMID: 24771021]
  62. Plant Signal Behav. 2014;9(9):e29570 [PMID: 25763694]
  63. Plant Cell. 2015 Oct;27(10):2800-13 [PMID: 26410302]
  64. Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7 [PMID: 24174544]
  65. Plant Cell. 2017 May;29(5):1088-1104 [PMID: 28487409]
  66. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11199-204 [PMID: 25028496]
  67. Rice (N Y). 2012 Oct 06;5(1):32 [PMID: 24279910]
  68. Theor Appl Genet. 2003 Aug;107(3):479-93 [PMID: 12736777]
  69. Plant Physiol. 2016 Dec;172(4):2363-2373 [PMID: 27784768]
  70. Plant J. 2013 Aug;75(4):618-30 [PMID: 23663106]

MeSH Term

Gene Expression Regulation, Plant
Indoleacetic Acids
Oryza
Plant Proteins
Transcription Factors

Chemicals

Indoleacetic Acids
Plant Proteins
Transcription Factors