Scleral hypoxia is a target for myopia control.

Hao Wu, Wei Chen, Fei Zhao, Qingyi Zhou, Peter S Reinach, Lili Deng, Li Ma, Shumeng Luo, Nethrajeith Srinivasalu, Miaozhen Pan, Yang Hu, Xiaomeng Pei, Jing Sun, Ran Ren, Yinghui Xiong, Zhonglou Zhou, Sen Zhang, Geng Tian, Jianhuo Fang, Lina Zhang, Jidong Lang, Deng Wu, Changqing Zeng, Jia Qu, Xiangtian Zhou
Author Information
  1. Hao Wu: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China. ORCID
  2. Wei Chen: Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, The Chinese Academy of Sciences, 100101 Beijing, China.
  3. Fei Zhao: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  4. Qingyi Zhou: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  5. Peter S Reinach: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  6. Lili Deng: Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, The Chinese Academy of Sciences, 100101 Beijing, China.
  7. Li Ma: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  8. Shumeng Luo: Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, The Chinese Academy of Sciences, 100101 Beijing, China.
  9. Nethrajeith Srinivasalu: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  10. Miaozhen Pan: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  11. Yang Hu: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  12. Xiaomeng Pei: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  13. Jing Sun: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  14. Ran Ren: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  15. Yinghui Xiong: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  16. Zhonglou Zhou: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  17. Sen Zhang: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China.
  18. Geng Tian: Genomic and Synthetic Biology Core Facility, Tsinghua University, 100084 Beijing, China.
  19. Jianhuo Fang: Genomic and Synthetic Biology Core Facility, Tsinghua University, 100084 Beijing, China.
  20. Lina Zhang: Genomic and Synthetic Biology Core Facility, Tsinghua University, 100084 Beijing, China.
  21. Jidong Lang: Genomic and Synthetic Biology Core Facility, Tsinghua University, 100084 Beijing, China.
  22. Deng Wu: Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, The Chinese Academy of Sciences, 100101 Beijing, China.
  23. Changqing Zeng: Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, The Chinese Academy of Sciences, 100101 Beijing, China; czeng@big.ac.cn jqu@wmu.edu.cn zxt@mail.eye.ac.cn.
  24. Jia Qu: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China; czeng@big.ac.cn jqu@wmu.edu.cn zxt@mail.eye.ac.cn.
  25. Xiangtian Zhou: School of Optometry and Ophthalmology Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China; czeng@big.ac.cn jqu@wmu.edu.cn zxt@mail.eye.ac.cn.

Abstract

Worldwide, myopia is the leading cause of visual impairment. It results from inappropriate extension of the ocular axis and concomitant declines in scleral strength and thickness caused by extracellular matrix (ECM) remodeling. However, the identities of the initiators and signaling pathways that induce scleral ECM remodeling in myopia are unknown. Here, we used single-cell RNA-sequencing to identify pathways activated in the sclera during myopia development. We found that the hypoxia-signaling, the eIF2-signaling, and mTOR-signaling pathways were activated in murine myopic sclera. Consistent with the role of hypoxic pathways in mouse model of myopia, nearly one third of human myopia risk genes from the genome-wide association study and linkage analyses interact with genes in the hypoxia-inducible factor-1α (HIF-1α)-signaling pathway. Furthermore, experimental myopia selectively induced HIF-1α up-regulation in the myopic sclera of both mice and guinea pigs. Additionally, hypoxia exposure (5% O) promoted myofibroblast transdifferentiation with down-regulation of type I collagen in human scleral fibroblasts. Importantly, the antihypoxia drugs salidroside and formononetin down-regulated HIF-1α expression as well as the phosphorylation levels of eIF2α and mTOR, slowing experimental myopia progression without affecting normal ocular growth in guinea pigs. Furthermore, eIF2α phosphorylation inhibition suppressed experimental myopia, whereas mTOR phosphorylation induced myopia in normal mice. Collectively, these findings defined an essential role of hypoxia in scleral ECM remodeling and myopia development, suggesting a therapeutic approach to control myopia by ameliorating hypoxia.

Keywords

References

  1. Prog Retin Eye Res. 2012 Nov;31(6):622-60 [PMID: 22772022]
  2. J Alzheimers Dis. 2012;28(4):795-808 [PMID: 22085862]
  3. Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4362-70 [PMID: 20484596]
  4. Invest Ophthalmol Vis Sci. 2013 Oct 21;54(10):6806-19 [PMID: 24045991]
  5. Invest Ophthalmol Vis Sci. 2015 Oct;56(11):6414-22 [PMID: 26444722]
  6. Mol Vis. 2007 Jul 20;13:1234-44 [PMID: 17679952]
  7. Exp Eye Res. 2004 Mar;78(3):609-23 [PMID: 15106941]
  8. Am J Physiol Cell Physiol. 2004 Feb;286(2):C416-25 [PMID: 14561589]
  9. Nature. 1977 Mar 3;266(5597):66-8 [PMID: 402582]
  10. Curr Pharm Des. 2015;21(32):4718-30 [PMID: 26350533]
  11. Optom Vis Sci. 2004 Feb;81(2):99-110 [PMID: 15127929]
  12. Mol Vis. 2015 Feb 06;21:138-47 [PMID: 25684979]
  13. Neuron. 2004 Aug 19;43(4):447-68 [PMID: 15312645]
  14. Ophthalmology. 2016 May;123(5):1036-42 [PMID: 26875007]
  15. Ophthalmic Physiol Opt. 2013 May;33(3):245-56 [PMID: 23662958]
  16. Curr Opin Ophthalmol. 2017 May;28(3):267-275 [PMID: 28212157]
  17. N Engl J Med. 1985 Jun 20;312(25):1609-15 [PMID: 4000200]
  18. Int Arch Allergy Immunol. 2012;159(4):399-409 [PMID: 22846744]
  19. Nucleic Acids Res. 2014 Jan;42(Database issue):D1001-6 [PMID: 24316577]
  20. Clin Cosmet Investig Dermatol. 2014 Nov 06;7:301-11 [PMID: 25395868]
  21. Nature. 2015 Mar 19;519(7543):276-8 [PMID: 25788077]
  22. Clin Genet. 2011 Apr;79(4):301-20 [PMID: 21155761]
  23. Invest Ophthalmol Vis Sci. 2012 Dec 05;53(13):7983-8 [PMID: 23049088]
  24. Mol Vis. 2014 Dec 09;20:1643-59 [PMID: 25540576]
  25. Clin Exp Optom. 2015 Nov;98(6):497-506 [PMID: 26497977]
  26. Biochim Biophys Acta. 2013 Jun;1833(6):1454-62 [PMID: 23466866]
  27. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  28. Mol Cell Biol. 2002 Nov;22(21):7405-16 [PMID: 12370288]
  29. Invest Ophthalmol Vis Sci. 2001 Sep;42(10):2179-87 [PMID: 11527928]
  30. Exp Eye Res. 2006 Apr;82(4):628-36 [PMID: 16256987]
  31. J Biol Chem. 2009 Jan 23;284(4):2072-9 [PMID: 19011237]
  32. BMC Ophthalmol. 2015 Jul 03;15:70 [PMID: 26138613]
  33. Inflamm Res. 2017 Jun;66(6):451-465 [PMID: 28040859]
  34. Acta Ophthalmol. 2010 Nov;88(7):759-65 [PMID: 19604158]
  35. J Mol Cell Cardiol. 2015 Nov;88:120-3 [PMID: 26454160]
  36. Exp Eye Res. 2009 Jun 15;89(1):101-8 [PMID: 19268468]
  37. Metab Pediatr Syst Ophthalmol. 1983;7(4):183-8 [PMID: 6678372]
  38. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510-4 [PMID: 7539918]
  39. Nucleic Acids Res. 2016 Jan 4;44(D1):D862-8 [PMID: 26582918]
  40. Exp Eye Res. 2000 Apr;70(4):519-27 [PMID: 10866000]
  41. Biol Pharm Bull. 2014;37(7):1199-206 [PMID: 24989011]
  42. Science. 1987 Jul 3;237(4810):73-7 [PMID: 3603011]
  43. Br J Ophthalmol. 2007 Apr;91(4):520-6 [PMID: 17035278]
  44. Exp Eye Res. 2002 May;74(5):561-70 [PMID: 12076077]
  45. Biomed Pharmacother. 2017 Mar;87:496-502 [PMID: 28073099]
  46. Invest Ophthalmol Vis Sci. 2004 Mar;45(3):758-63 [PMID: 14985287]
  47. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2067-75 [PMID: 12091398]
  48. Prog Retin Eye Res. 2017 Nov;61:60-71 [PMID: 28602573]
  49. Exp Eye Res. 2013 Sep;114:128-40 [PMID: 23399866]
  50. Mol Vis. 2009;15:464-75 [PMID: 19262686]
  51. Curr Eye Res. 2006 Jul-Aug;31(7-8):587-97 [PMID: 16877267]
  52. Am J Ophthalmol. 2017 May;177:27-33 [PMID: 28209502]
  53. Curr Eye Res. 1990 Dec;9(12):1157-65 [PMID: 2091895]
  54. FASEB J. 2002 Jun;16(8):771-80 [PMID: 12039858]
  55. Int J Cardiol. 2014 Jul 1;174(3):565-73 [PMID: 24825027]
  56. Drug Des Devel Ther. 2016 Sep 23;10:3071-3081 [PMID: 27729769]
  57. J Mol Cell Cardiol. 2015 May;82:153-66 [PMID: 25772255]
  58. Invest Ophthalmol Vis Sci. 2013 Apr 03;54(4):2445-56 [PMID: 23482471]
  59. J Proteomics. 2016 Jan 1;130:211-20 [PMID: 26435418]
  60. Int J Mol Med. 2017 Jan;39(1):153-159 [PMID: 27909731]
  61. J Biol Chem. 2003 May 9;278(19):16587-94 [PMID: 12606541]
  62. Vision Res. 2004 Mar;44(7):643-53 [PMID: 14751549]

MeSH Term

Animals
Disease Models, Animal
Eukaryotic Initiation Factor-2
Extracellular Matrix
Eye Proteins
Guinea Pigs
Humans
Hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit
Male
Mice
Myopia
Sclera
Signal Transduction
TOR Serine-Threonine Kinases

Chemicals

Eukaryotic Initiation Factor-2
Eye Proteins
Hif1a protein, mouse
Hypoxia-Inducible Factor 1, alpha Subunit
mTOR protein, mouse
TOR Serine-Threonine Kinases