Integrated Analysis of Quantitative Proteome and Transcriptional Profiles Reveals the Dynamic Function of Maternally Expressed Proteins After Parthenogenetic Activation of Buffalo Oocyte.

Fumei Chen, Qiang Fu, Liping Pu, Pengfei Zhang, Yulin Huang, Zhen Hou, Zhuangzhuang Xu, Dongrong Chen, Fengling Huang, Tingxian Deng, Xianwei Liang, Yangqing Lu, Ming Zhang
Author Information
  1. Fumei Chen: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China. ORCID
  2. Qiang Fu: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
  3. Liping Pu: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
  4. Pengfei Zhang: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
  5. Yulin Huang: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
  6. Zhen Hou: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
  7. Zhuangzhuang Xu: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
  8. Dongrong Chen: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
  9. Fengling Huang: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China.
  10. Tingxian Deng: ��Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China. ORCID
  11. Xianwei Liang: ��Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China liangbri@126.com.
  12. Yangqing Lu: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China; luyangqing@126.com.
  13. Ming Zhang: From the ���State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China; mingzhang@gxu.edu.cn.

Abstract

Maternal-effect genes are especially critical for early embryonic development after fertilization and until massive activation of the embryonic genome occurs. By applying a tandem mass tag (TMT)-labeled quantitative proteomics combined with RNA sequencing approach, the proteome of the buffalo was quantitatively analyzed during parthenogenesis of mature oocytes and the two-cell stage embryo. Of 1908 quantified proteins, 123 differed significantly. The transcriptome was analyzed eight stages (GV, MII, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst) of Buffalo using the RNA sequencing approach, and a total of 3567 unique genes were identified to be differently expressed between all consecutive stages of pre-implantation development. Validation of proteomics results (TUBB3, CTNNA1, CDH3, MAP2K1), which are involved in tight junction and gap junction, revealing that the maternal expression of the proteins possibly plays a role in the formation of cellular junctions firstly after parthenogenetic activation. Correlation and hierarchical analyses of transcriptional profiles and the expression of NPM2 and NLRP5 mRNA of buffalo developed oocytes and parthenogenetic embryos indicated that the "maternal-to-zygotic transition" (MZT) process might exist in the model of parthenogenesis, which is similar to a normally fertilized embryo, and may occur between the 8-cell to 16-cell stage. These data provide a rich resource for further studies on maternal proteins and genes and are conducive to improving nuclear transfer technology.

Keywords

References

  1. Semin Cell Dev Biol. 2000 Feb;11(1):7-14 [PMID: 10736259]
  2. BMC Dev Biol. 2006 Jun 06;6:26 [PMID: 16753072]
  3. Bioinformatics. 2013 Apr 15;29(8):1035-43 [PMID: 23428641]
  4. Nat Genet. 2000 Nov;26(3):267-8 [PMID: 11062459]
  5. Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 [PMID: 23934149]
  6. Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56 [PMID: 26527722]
  7. J Mol Biol. 1980 May 25;139(3):561-8 [PMID: 7441745]
  8. Mol Reprod Dev. 1998 Sep;51(1):112-21 [PMID: 9712325]
  9. Development. 2008 Aug;135(16):2729-38 [PMID: 18614575]
  10. BMC Genomics. 2009 Aug 03;10:348 [PMID: 19646285]
  11. J Exp Zool B Mol Dev Evol. 2008 Jan 15;310(1):73-84 [PMID: 17219372]
  12. Mol Reprod Dev. 1998 Dec;51(4):381-9 [PMID: 9820196]
  13. Development. 1993 Apr;117(4):1355-67 [PMID: 8404537]
  14. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):855-9 [PMID: 7846066]
  15. Proteome Sci. 2011 Jun 08;9:28 [PMID: 21649931]
  16. Mol Biol Cell. 2008 Oct;19(10):4383-92 [PMID: 18701707]
  17. Genes Dev. 2006 Jul 1;20(13):1744-54 [PMID: 16818606]
  18. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [PMID: 11752295]
  19. J Proteome Res. 2008 Nov;7(11):4821-30 [PMID: 18803416]
  20. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  21. Endocrinology. 2011 Mar;152(3):1013-23 [PMID: 21193554]
  22. Reproduction. 2007 Jun;133(6):1107-20 [PMID: 17636165]
  23. Cell. 1987 Dec 24;51(6):1009-18 [PMID: 3690659]
  24. Genome Biol. 2015 Jul 23;16:148 [PMID: 26201400]
  25. J Proteome Res. 2014 Oct 3;13(10):4363-76 [PMID: 25102770]
  26. Placenta. 2007 Aug-Sep;28(8-9):763-74 [PMID: 17582493]
  27. Development. 2008 Aug;135(15):2627-36 [PMID: 18599511]
  28. Biol Reprod. 2011 Jul;85(1):70-7 [PMID: 21415138]
  29. J Embryol Exp Morphol. 1984 Feb;79:53-76 [PMID: 6716047]
  30. Semin Perinatol. 1979 Jul;3(3):225-39 [PMID: 392766]
  31. FASEB J. 2010 Feb;24(2):485-94 [PMID: 19805576]
  32. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8263-7 [PMID: 8058792]
  33. Science. 2004 Aug 20;305(5687):1157-9 [PMID: 15326356]
  34. Nat Genet. 2003 Feb;33(2):187-91 [PMID: 12539046]
  35. Trends Cell Biol. 1998 Dec;8(12):477-83 [PMID: 9861669]
  36. Reprod Domest Anim. 2010 Feb;45(1):103-8 [PMID: 19144016]
  37. PLoS One. 2010 Jun 21;5(6):e11240 [PMID: 20574525]
  38. Nature. 2006 Apr 27;440(7088):1190-3 [PMID: 16641996]
  39. Mol Reprod Dev. 2000 Apr;55(4):393-8 [PMID: 10694746]
  40. Mutat Res. 1992 Dec;296(1-2):17-31 [PMID: 1279404]
  41. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7325-30 [PMID: 24799717]
  42. J Cell Sci. 1995 Apr;108 ( Pt 4):1715-22 [PMID: 7615688]
  43. Proteomics Clin Appl. 2010 Mar;4(3):337-51 [PMID: 21137054]
  44. Theriogenology. 2013 Nov;80(8):878-86 [PMID: 24007823]
  45. Mol Reprod Dev. 1994 Feb;37(2):121-9 [PMID: 7545925]
  46. Science. 2012 Mar 23;335(6075):1499-502 [PMID: 22442485]
  47. Cell. 1979 Oct;18(2):399-409 [PMID: 498274]
  48. Mamm Genome. 2006 Sep;17(9):941-9 [PMID: 16964442]
  49. Nat Struct Mol Biol. 2014 Jul;21(7):609-16 [PMID: 24908396]
  50. F1000Res. 2013 Sep 16;2:188 [PMID: 24555089]
  51. Nat Biotechnol. 2012 Aug;30(8):777-82 [PMID: 22820318]
  52. Mol Reprod Dev. 1991 Sep;30(1):18-26 [PMID: 1664214]
  53. Physiol Behav. 1999 Oct;67(4):599-605 [PMID: 10549899]
  54. Mol Reprod Dev. 1990 Jul;26(3):261-97 [PMID: 2198066]
  55. Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4139-44 [PMID: 24591639]
  56. Development. 2013 Sep;140(17):3624-34 [PMID: 23903189]
  57. Theriogenology. 2005 Oct 1;64(6):1309-19 [PMID: 16139607]
  58. Development. 2004 Oct;131(19):4883-93 [PMID: 15342461]
  59. Nat Cell Biol. 2007 Jan;9(1):64-71 [PMID: 17143267]
  60. Reprod Biol Endocrinol. 2011 Mar 29;9:40 [PMID: 21447182]
  61. Science. 2003 Apr 25;300(5619):633-6 [PMID: 12714744]
  62. Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18905-10 [PMID: 17142320]
  63. J Proteome Res. 2011 May 6;10(5):2140-53 [PMID: 21344949]
  64. Dev Biol. 1997 May 15;185(2):261-71 [PMID: 9187087]
  65. Dev Biol. 1986 Sep;117(1):146-55 [PMID: 3743894]
  66. Am J Clin Nutr. 2003 Jun;77(6):1537S-1543S [PMID: 12812151]
  67. Semin Reprod Med. 2000;18(2):185-93 [PMID: 11256168]
  68. Reproduction. 2007 Oct;134(4):559-68 [PMID: 17890291]
  69. Mutat Res. 1992 Dec;296(1-2):3-15 [PMID: 1279405]
  70. Annu Rev Physiol. 2012;74:503-28 [PMID: 22335799]
  71. Biol Reprod. 2007 Aug;77(2):285-91 [PMID: 17475931]
  72. Development. 2004 Sep;131(18):4435-45 [PMID: 15306566]
  73. Development. 1997 May;124(10):2027-37 [PMID: 9169849]
  74. Mol Reprod Dev. 2004 Dec;69(4):375-80 [PMID: 15457515]
  75. Development. 2009 Sep;136(18):3033-42 [PMID: 19700615]
  76. Nature. 2000 Oct 12;407(6805):693-4 [PMID: 11048707]
  77. J Cell Sci. 1997 May;110 ( Pt 10):1147-58 [PMID: 9191039]
  78. Dev Psychobiol. 1980 Mar;13(2):181-90 [PMID: 7358221]
  79. Biol Reprod. 2004 Oct;71(4):1359-66 [PMID: 15189828]
  80. J Cell Biol. 1989 Apr;108(4):1407-18 [PMID: 2647768]
  81. Dev Cell. 2008 Oct;15(4):547-57 [PMID: 18854139]
  82. Epigenetics. 2014 Sep;9(9):1271-9 [PMID: 25147917]
  83. Cell. 1980 Sep;21(2):373-83 [PMID: 7407918]
  84. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5456-60 [PMID: 7515503]
  85. Development. 2015 Oct 15;142(20):3468-77 [PMID: 26395495]
  86. Dev Genet. 1989;10(4):318-23 [PMID: 2551553]
  87. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  88. Dev Dyn. 2003 Nov;228(3):535-54 [PMID: 14579391]
  89. Mol Reprod Dev. 1990 May;26(1):90-100 [PMID: 2189447]
  90. Autophagy. 2008 Nov;4(8):1076-8 [PMID: 18849666]
  91. Mol Reprod Dev. 2011 May;78(5):306-17 [PMID: 21480430]
  92. Nature. 1978 Oct 5;275(5679):416-20 [PMID: 692721]
  93. Theriogenology. 2003 Dec;60(9):1657-63 [PMID: 14580648]
  94. Genes Dev. 2008 Jun 15;22(12):1607-16 [PMID: 18559477]
  95. Mol Reprod Dev. 2007 May;74(5):608-16 [PMID: 17044029]
  96. Behav Genet. 1997 May;27(3):231-40 [PMID: 9210794]
  97. Biol Reprod. 2004 Nov;71(5):1533-9 [PMID: 15229143]
  98. J Biol Chem. 1995 Sep 22;270(38):22077-80 [PMID: 7673179]
  99. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1034-8 [PMID: 6987661]
  100. Development. 1993 Mar;117(3):1145-51 [PMID: 8325239]
  101. Development. 2015 Sep 15;142(18):3151-65 [PMID: 26293300]
  102. Biol Reprod. 2009 Aug;81(2):333-42 [PMID: 19420384]
  103. Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17639-44 [PMID: 20876089]

MeSH Term

Animals
Buffaloes
Embryo, Mammalian
Female
Gap Junctions
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gene Ontology
Oocytes
Parthenogenesis
Proteome
Proteomics
RNA, Messenger
Reproducibility of Results
Tight Junctions
Up-Regulation

Chemicals

Proteome
RNA, Messenger

Word Cloud

Similar Articles

Cited By