Mitochondrial transcription and translation: overview.

Aaron R D'Souza, Michal Minczuk
Author Information
  1. Aaron R D'Souza: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, U.K.
  2. Michal Minczuk: MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, U.K. michal.minczuk@mrc-mbu.cam.ac.uk.

Abstract

Mitochondria are the major source of ATP in the cell. Five multi-subunit complexes in the inner membrane of the organelle are involved in the oxidative phosphorylation required for ATP production. Thirteen subunits of these complexes are encoded by the mitochondrial genome often referred to as mtDNA. For this reason, the expression of mtDNA is vital for the assembly and functioning of the oxidative phosphorylation complexes. Defects of the mechanisms regulating mtDNA gene expression have been associated with deficiencies in assembly of these complexes, resulting in mitochondrial diseases. Recently, numerous factors involved in these processes have been identified and characterized leading to a deeper understanding of the mechanisms that underlie mitochondrial diseases.

Keywords

References

  1. J Biol Chem. 1990 Aug 15;265(23):13618-22 [PMID: 2380177]
  2. Nat Chem Biol. 2016 Jul;12(7):546-51 [PMID: 27214402]
  3. Mol Cell. 2008 Feb 1;29(2):180-90 [PMID: 18243113]
  4. J Biol Chem. 2014 Sep 5;289(36):24936-42 [PMID: 25074936]
  5. Nucleic Acids Res. 2005 Dec 09;33(22):7011-8 [PMID: 16340009]
  6. Nature. 1981 Apr 9;290(5806):457-65 [PMID: 7219534]
  7. J Biol Chem. 2001 Oct 26;276(43):40041-9 [PMID: 11504732]
  8. BMC Mol Biol. 2010 Sep 16;11:72 [PMID: 20846394]
  9. Cell Metab. 2009 Apr;9(4):386-97 [PMID: 19356719]
  10. Nucleic Acids Res. 2010 Jan;38(1):279-98 [PMID: 19864255]
  11. Elife. 2017 Jul 26;6: [PMID: 28745585]
  12. Cell Metab. 2013 Mar 5;17(3):399-410 [PMID: 23473034]
  13. J Biol Chem. 2006 Aug 25;281(34):24647-52 [PMID: 16790426]
  14. RNA. 2012 Dec;18(12):2269-76 [PMID: 23097428]
  15. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7284-9 [PMID: 24799711]
  16. J Biol Chem. 2010 Apr 30;285(18):13742-7 [PMID: 20220140]
  17. PLoS Genet. 2014 Feb 06;10(2):e1004110 [PMID: 24516400]
  18. PLoS Genet. 2015 Aug 06;11(8):e1005423 [PMID: 26247782]
  19. RNA Biol. 2011 Jul-Aug;8(4):616-26 [PMID: 21593607]
  20. PLoS Genet. 2016 Sep 30;12(9):e1006355 [PMID: 27689697]
  21. J Biol Chem. 2017 Mar 17;292(11):4519-4532 [PMID: 28082677]
  22. PLoS Genet. 2015 Jun 18;11(6):e1005227 [PMID: 26087262]
  23. Am J Hum Genet. 2015 Aug 6;97(2):319-28 [PMID: 26189817]
  24. Nat Commun. 2017 Nov 16;8(1):1532 [PMID: 29146908]
  25. Nucleic Acids Res. 2016 Jul 8;44(12):5732-42 [PMID: 27112570]
  26. Science. 2015 Apr 3;348(6230):95-98 [PMID: 25838379]
  27. Biochem J. 2010 Sep 15;430(3):551-8 [PMID: 20604745]
  28. Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12198-12201 [PMID: 27729525]
  29. Cell. 1984 Mar;36(3):635-43 [PMID: 6697390]
  30. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7195-9 [PMID: 6185947]
  31. J Biol Chem. 1989 May 5;264(13):7518-22 [PMID: 2540195]
  32. Eur J Hum Genet. 2015 Oct;23(10):1301-7 [PMID: 25604853]
  33. Gene. 1997 Sep 15;197(1-2):325-36 [PMID: 9332382]
  34. Cell. 2003 Oct 3;115(1):97-108 [PMID: 14532006]
  35. Nat Genet. 2002 Jul;31(3):289-94 [PMID: 12068295]
  36. Nucleic Acids Res. 2008 Oct;36(18):5787-99 [PMID: 18782833]
  37. Hum Mol Genet. 2014 May 15;23(10):2580-92 [PMID: 24399447]
  38. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16209-14 [PMID: 19805282]
  39. Science. 2015 Apr 17;348(6232):303-8 [PMID: 25837512]
  40. J Biol Chem. 1996 Mar 8;271(10):5805-11 [PMID: 8621449]
  41. Cell. 2017 Nov 16;171(5):1072-1081.e10 [PMID: 29149603]
  42. Mol Cell Biol. 2006 Nov;26(22):8475-87 [PMID: 16966381]
  43. Cell. 1983 Aug;34(1):151-9 [PMID: 6883508]
  44. J Mol Biol. 2008 Dec 26;384(4):929-40 [PMID: 18930736]
  45. PLoS Biol. 2016 Sep 15;14(9):e1002557 [PMID: 27631568]
  46. Cell Metab. 2013 Mar 5;17(3):386-98 [PMID: 23473033]
  47. Nat Commun. 2013;4:2940 [PMID: 24352605]
  48. Science. 2010 Jan 15;327(5963):301 [PMID: 20075246]
  49. Hum Mol Genet. 2011 Dec 1;20(23):4634-43 [PMID: 21890497]
  50. Mol Cell. 2004 Aug 27;15(4):549-58 [PMID: 15327771]
  51. Nat Genet. 2003 Jan;33(1):23-4 [PMID: 12496758]
  52. Nucleic Acids Res. 2012 Sep;40(16):8033-47 [PMID: 22661577]
  53. Cell. 2010 Jun 11;141(6):982-93 [PMID: 20550934]
  54. Nucleic Acids Res. 2004 Oct 11;32(18):5464-70 [PMID: 15477394]
  55. PLoS Genet. 2014 Sep 18;10(9):e1004616 [PMID: 25233460]
  56. J Biol Chem. 2000 Nov 10;275(45):35063-9 [PMID: 10952987]
  57. Cell Metab. 2013 Apr 2;17(4):618-26 [PMID: 23562081]
  58. Mol Cell Biol. 2002 Feb;22(4):1116-25 [PMID: 11809803]
  59. Nucleic Acids Res. 2011 Sep 1;39(17):7750-63 [PMID: 21666256]
  60. Cell. 2008 Oct 31;135(3):462-74 [PMID: 18984158]
  61. Cell Metab. 2016 Dec 13;24(6):875-885 [PMID: 27667664]
  62. Biochem J. 2014 May 15;460(1):91-101 [PMID: 24579914]
  63. Nucleic Acids Res. 2017 Jan 25;45(2):861-874 [PMID: 27903899]
  64. Nat Commun. 2016 Jun 30;7:12039 [PMID: 27356879]
  65. Science. 2015 Jan 30;347(6221):548-51 [PMID: 25635099]
  66. Cell Rep. 2015 Feb 12;:null [PMID: 25683715]
  67. Nucleic Acids Res. 2013 Jan;41(2):1223-40 [PMID: 23221631]
  68. EMBO Rep. 2017 Jan;18(1):28-38 [PMID: 27974379]
  69. EMBO J. 1998 Jul 15;17(14):4101-13 [PMID: 9670025]
  70. Nat Struct Mol Biol. 2010 Jul;17(7):891-3 [PMID: 20543826]
  71. PLoS Genet. 2016 Mar 30;12(3):e1005964 [PMID: 27029019]
  72. PLoS One. 2011 Apr 29;6(4):e19152 [PMID: 21559454]
  73. Nucleic Acids Res. 2010 Jun;38(11):3732-42 [PMID: 20144953]
  74. EMBO J. 2012 Jan 18;31(2):443-56 [PMID: 22045337]
  75. J Biol Chem. 2005 May 20;280(20):19823-8 [PMID: 15772074]
  76. Trends Biochem Sci. 2017 Aug;42(8):625-639 [PMID: 28285835]
  77. Trends Genet. 2017 Nov 24;:null [PMID: 29179920]
  78. Essays Biochem. 2018 Jul 20;62(3):321-340 [PMID: 29980628]
  79. PLoS Genet. 2014 Jun 05;10(6):e1004424 [PMID: 24901367]
  80. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20970-5 [PMID: 24324136]
  81. Nucleic Acids Res. 2011 May;39(10):4284-99 [PMID: 21278163]
  82. Cell. 2005 Dec 29;123(7):1227-40 [PMID: 16377564]
  83. Hum Mol Genet. 2014 Dec 1;23(23):6345-55 [PMID: 25008111]
  84. PLoS Genet. 2009 Aug;5(8):e1000590 [PMID: 19680543]
  85. Nature. 2011 Sep 25;478(7368):269-73 [PMID: 21947009]
  86. J Biol Chem. 2011 Oct 7;286(40):34479-85 [PMID: 21873426]
  87. Am J Hum Genet. 2012 Jan 13;90(1):142-51 [PMID: 22243966]
  88. Nucleic Acids Res. 2017 Jun 2;45(10):6135-6146 [PMID: 28335001]
  89. Nucleic Acids Res. 2015 Oct 15;43(18):9065-75 [PMID: 26319014]
  90. Genome Biol. 2012 Feb 22;13(2):R12 [PMID: 22356826]
  91. Biochem Biophys Res Commun. 2010 Aug 6;398(4):759-64 [PMID: 20633537]
  92. Nucleic Acids Res. 2015 Mar 11;43(5):2615-24 [PMID: 25690892]
  93. PLoS Genet. 2012;8(8):e1002910 [PMID: 22916040]
  94. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1081-5 [PMID: 20211597]
  95. Cell. 2017 Nov 16;171(5):1082-1093.e13 [PMID: 29033127]
  96. Mol Cell. 2009 Aug 28;35(4):502-10 [PMID: 19716793]
  97. Nucleic Acids Res. 2004 Nov 16;32(20):6001-14 [PMID: 15547249]
  98. RNA. 1999 Aug;5(8):1014-20 [PMID: 10445876]
  99. J Biol Chem. 2010 Jun 11;285(24):18129-33 [PMID: 20410300]
  100. Mol Cell. 2011 Feb 4;41(3):311-20 [PMID: 21292163]
  101. Mol Cell. 2007 Sep 7;27(5):745-57 [PMID: 17803939]
  102. Biol Direct. 2012 May 08;7:14 [PMID: 22569235]
  103. Nucleic Acids Res. 2018 Jun 1;46(10):5209-5226 [PMID: 29518244]
  104. Science. 2014 Nov 7;346(6210):718-722 [PMID: 25278503]
  105. RNA. 2015 Nov;21(11):1873-84 [PMID: 26370583]
  106. Nucleic Acids Res. 2018 Feb 28;46(4):1565-1583 [PMID: 29390138]
  107. Hum Genet. 2001 Nov;109(5):542-50 [PMID: 11735030]
  108. J Biol Chem. 2000 Jul 7;275(27):20308-14 [PMID: 10801827]
  109. J Biol Chem. 2005 May 20;280(20):19721-7 [PMID: 15769737]
  110. Mol Biol Cell. 2014 Sep 1;25(17):2542-55 [PMID: 25009282]
  111. Cell. 2016 Oct 6;167(2):471-483.e10 [PMID: 27693358]
  112. Nat Neurosci. 2007 Jul;10(7):828-37 [PMID: 17529987]
  113. Essays Biochem. 2018 Jul 20;62(3):287-296 [PMID: 29880722]
  114. EMBO J. 2010 Mar 17;29(6):1116-25 [PMID: 20186120]
  115. Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16072-7 [PMID: 20798345]
  116. Nature. 2014 Nov 13;515(7526):283-6 [PMID: 25271403]
  117. Cell Rep. 2015 Feb 24;10(7):1110-21 [PMID: 25704814]
  118. J Biol Chem. 2017 Feb 17;292(7):2637-2645 [PMID: 28028173]
  119. Ann N Y Acad Sci. 2004 Apr;1011:61-8 [PMID: 15126284]
  120. Cell. 2009 Nov 25;139(5):934-44 [PMID: 19945377]
  121. Cell Cycle. 2011 Sep 1;10(17):2904-16 [PMID: 21857155]
  122. Hum Mol Genet. 1997 Apr;6(4):615-25 [PMID: 9097968]
  123. Nature. 1981 Apr 9;290(5806):470-4 [PMID: 7219536]
  124. EMBO J. 2016 Oct 4;35(19):2104-2119 [PMID: 27497299]
  125. Mol Biol Cell. 2010 Apr 15;21(8):1315-23 [PMID: 20200222]
  126. Mol Cell Biol. 2008 Dec;28(24):7514-31 [PMID: 18852288]

Grants

  1. MC_UU_00015/7/Medical Research Council
  2. MC_U105697135/Medical Research Council
  3. MC_UU_00015/4/Medical Research Council

MeSH Term

Adenosine Triphosphate
DNA, Mitochondrial
Humans
Mitochondria
Mitochondrial Diseases
Oxidative Phosphorylation
Protein Biosynthesis
RNA, Messenger
RNA, Transfer
RNA, Transfer, Amino Acyl
Ribosomes
Transcription, Genetic

Chemicals

DNA, Mitochondrial
RNA, Messenger
RNA, Transfer, Amino Acyl
Adenosine Triphosphate
RNA, Transfer

Word Cloud

Created with Highcharts 10.0.0complexesmitochondrialmtDNAATPinvolvedoxidativephosphorylationexpressionassemblymechanismsdiseasesMitochondriamajorsourcecellFivemulti-subunitinnermembraneorganellerequiredproductionThirteensubunitsencodedgenomeoftenreferredreasonvitalfunctioningDefectsregulatinggeneassociateddeficienciesresultingRecentlynumerousfactorsprocessesidentifiedcharacterizedleadingdeeperunderstandingunderlieMitochondrialtranscriptiontranslation:overviewmitochondriatranslationtrascription

Similar Articles

Cited By