Genome Wide Transcriptome Analysis Reveals Complex Regulatory Mechanisms Underlying Phosphate Homeostasis in Soybean Nodules.

Yingbin Xue, Qingli Zhuang, Shengnan Zhu, Bixian Xiao, Cuiyue Liang, Hong Liao, Jiang Tian
Author Information
  1. Yingbin Xue: Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. yingbinxue@yeah.net.
  2. Qingli Zhuang: Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. 15889964001@163.com.
  3. Shengnan Zhu: Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. shnzhu@163.com.
  4. Bixian Xiao: Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. 13570450400@163.com.
  5. Cuiyue Liang: Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. liangcy@scau.edu.cn.
  6. Hong Liao: Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China. hliao@fafu.edu.cn.
  7. Jiang Tian: Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. jtian@scau.edu.cn.

Abstract

Phosphorus (P) deficiency is a major limitation for legume crop production. Although overall adaptations of plant roots to P deficiency have been extensively studied, only fragmentary information is available in regard to root nodule responses to P deficiency. In this study, genome wide transcriptome analysis was conducted using RNA-seq analysis in soybean nodules grown under P-sufficient (500 μM KH₂PO₄) and P-deficient (25 μM KH₂PO₄) conditions to investigate molecular mechanisms underlying soybean () nodule adaptation to phosphate (Pi) starvation. Phosphorus deficiency significantly decreased soybean nodule growth and nitrogenase activity. Nodule Pi concentrations declined by 49% in response to P deficiency, but this was well below the 87% and 88% decreases observed in shoots and roots, respectively. Nodule transcript profiling revealed that a total of 2055 genes exhibited differential expression patterns between Pi sufficient and deficient conditions. A set of (differentially expressed genes) DEGs appeared to be involved in maintaining Pi homeostasis in soybean nodules, including eight (), eight genes coding proteins containing the domain (, and 16 (). The results suggest that a complex transcriptional regulatory network participates in soybean nodule adaption to Pi starvation, most notable a Pi signaling pathway, are involved in maintaining Pi homeostasis in nodules.

Keywords

References

  1. PLoS One. 2012;7(10):e47726 [PMID: 23133521]
  2. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11934-9 [PMID: 16085708]
  3. Plant Physiol. 2013 Aug;162(4):2042-55 [PMID: 23796794]
  4. Plant Cell. 2013 Nov;25(11):4285-304 [PMID: 24249833]
  5. Plant Physiol. 2011 Jul;156(3):1006-15 [PMID: 21562330]
  6. Plant Cell Rep. 2012 Jan;31(1):49-56 [PMID: 21863348]
  7. Plant Physiol. 2015 Dec;169(4):2640-53 [PMID: 26432877]
  8. Proteomics. 2011 Dec;11(24):4648-59 [PMID: 22002838]
  9. Planta. 1998 Sep;206(1):44-52 [PMID: 9715532]
  10. Plant Cell Rep. 2014 Apr;33(4):655-67 [PMID: 24595918]
  11. J Integr Plant Biol. 2014 Mar;56(3):299-314 [PMID: 24528675]
  12. Curr Opin Biotechnol. 2012 Dec;23(6):866-71 [PMID: 22445911]
  13. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  14. Ann Bot. 2010 Jul;106(1):215-22 [PMID: 20228090]
  15. Plant J. 2015 May;82(4):556-69 [PMID: 25702710]
  16. Physiol Plant. 2017 Feb;159(2):215-227 [PMID: 27762446]
  17. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  18. J Biol Chem. 2002 Aug 2;277(31):27772-81 [PMID: 12021284]
  19. Plant Physiol. 1987 Jul;84(3):835-40 [PMID: 16665531]
  20. Plant Cell. 2014 Jan;26(1):454-64 [PMID: 24474629]
  21. Plant J. 2006 Dec;48(6):883-94 [PMID: 17227545]
  22. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  23. Mol Cells. 2017 Oct;40(10):697-705 [PMID: 29047263]
  24. Appl Microbiol Biotechnol. 2014 Mar;98(6):2805-17 [PMID: 24113821]
  25. Ann Bot. 2012 Jan;109(1):275-85 [PMID: 21948626]
  26. Plant Physiol. 2013 Feb;161(2):705-24 [PMID: 23197803]
  27. J Exp Bot. 2014 Jul;65(12):3299-310 [PMID: 24790114]
  28. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  29. Curr Opin Biotechnol. 2018 Feb;49:1-9 [PMID: 28732264]
  30. Science. 2016 May 20;352(6288):986-90 [PMID: 27080106]
  31. J Exp Bot. 2017 Nov 2;68(18):5057-5068 [PMID: 29036625]
  32. Front Plant Sci. 2017 Apr 11;8:533 [PMID: 28443121]
  33. Nat Commun. 2016 Aug 12;7:12433 [PMID: 27514472]
  34. Plant J. 2004 Mar;37(6):914-39 [PMID: 14996223]
  35. Annu Rev Plant Biol. 2011;62:185-206 [PMID: 21370979]
  36. Ann Bot. 2014 Sep;114(3):477-88 [PMID: 25074550]
  37. Plant J. 2008 Jun;54(6):965-75 [PMID: 18315545]
  38. Plant Physiol. 2011 Jul;156(3):1149-63 [PMID: 21628630]
  39. Plant Cell. 2009 Feb;21(2):545-57 [PMID: 19252081]
  40. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13324-9 [PMID: 12271140]
  41. Plant Physiol. 2012 Aug;159(4):1634-43 [PMID: 22740613]
  42. Curr Opin Plant Biol. 2014 Oct;21:59-66 [PMID: 25036899]
  43. Plant J. 2011 May;66(3):541-52 [PMID: 21261763]
  44. J Exp Bot. 2014 Mar;65(3):859-70 [PMID: 24368504]
  45. New Phytol. 2012 Jul;195(2):306-320 [PMID: 22691045]
  46. Plant J. 2004 Aug;39(4):629-42 [PMID: 15272879]
  47. New Phytol. 2014 Feb;201(3):837-849 [PMID: 24400899]
  48. Plant Sci. 2016 Jul;248:82-91 [PMID: 27181950]
  49. Plant Physiol. 2001 Aug;126(4):1598-608 [PMID: 11500558]
  50. Mycorrhiza. 2012 Jan;22(1):51-8 [PMID: 21494823]
  51. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4610-9 [PMID: 27450089]
  52. J Integr Plant Biol. 2018 Aug;60(8):632-648 [PMID: 29578639]
  53. Plant J. 2002 Aug;31(3):341-53 [PMID: 12164813]
  54. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:665-693 [PMID: 15012223]
  55. BMC Genomics. 2016 Mar 05;17:192 [PMID: 26944721]
  56. Bioinformatics. 2010 Jan 1;26(1):136-8 [PMID: 19855105]
  57. Annu Rev Plant Biol. 2010;61:593-620 [PMID: 20192754]
  58. Plant J. 2017 Sep;91(5):911-926 [PMID: 28628240]
  59. Plant Physiol. 2012 Aug;159(4):1571-81 [PMID: 22649273]
  60. Plant Signal Behav. 2015;10(9):e1061163 [PMID: 26224365]
  61. Genes Dev. 2001 Aug 15;15(16):2122-33 [PMID: 11511543]
  62. J Biol Chem. 2008 Sep 5;283(36):24673-81 [PMID: 18596039]
  63. Nat Commun. 2016 Sep 02;7:12636 [PMID: 27586842]
  64. BMC Plant Biol. 2013 Mar 20;13:48 [PMID: 23510338]
  65. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  66. J Integr Plant Biol. 2014 Mar;56(3):192-220 [PMID: 24417933]
  67. Funct Plant Biol. 2013 May;40(4):329-341 [PMID: 32481111]
  68. J Integr Plant Biol. 2009 Jul;51(7):663-74 [PMID: 19566645]
  69. Ying Yong Sheng Tai Xue Bao. 2008 Mar;19(3):564-8 [PMID: 18533526]
  70. J Chem Ecol. 2014 Jul;40(7):770-90 [PMID: 25052910]
  71. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14947-52 [PMID: 25271326]
  72. Crit Rev Biotechnol. 2013 Sep;33(3):309-27 [PMID: 22793647]
  73. New Phytol. 2012 Jul;195(2):356-371 [PMID: 22578268]
  74. Plant Cell Physiol. 2013 Sep;54(9):1469-77 [PMID: 23825220]
  75. Plant Cell Environ. 2014 May;37(5):1159-70 [PMID: 24344809]
  76. Plant J. 2009 Apr;58(2):183-94 [PMID: 19121107]
  77. Curr Opin Plant Biol. 2012 Aug;15(4):444-53 [PMID: 22727503]
  78. Plant Biol (Stuttg). 2011 Jan;13(1):7-15 [PMID: 21143719]
  79. Ann Bot. 2006 Oct;98(4):731-40 [PMID: 16855013]
  80. Plant Physiol. 2006 Jun;141(2):674-84 [PMID: 16648222]
  81. J Exp Bot. 2014 Nov;65(20):6035-48 [PMID: 25151618]
  82. New Phytol. 2003 Mar;157(3):423-447 [PMID: 33873400]
  83. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7760-5 [PMID: 15894620]
  84. PLoS One. 2012;7(5):e38106 [PMID: 22662274]
  85. Proteomics. 2013 Feb;13(3-4):624-36 [PMID: 23193087]
  86. Physiol Plant. 2010 Sep 1;140(1):21-31 [PMID: 20444196]
  87. J Exp Bot. 2016 Jul;67(14):4141-54 [PMID: 27194738]
  88. Open Biol. 2018 Jan;8(1): [PMID: 29298909]
  89. Annu Rev Plant Biol. 2014;65:95-123 [PMID: 24579991]
  90. Plant Physiol. 2009 Nov;151(3):1221-38 [PMID: 19755543]
  91. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14953-8 [PMID: 25271318]
  92. Gene. 2003 Oct 30;318:103-11 [PMID: 14585503]
  93. Plant Physiol. 2014 Apr;164(4):2020-9 [PMID: 24586044]
  94. Plant Mol Biol. 2004 Jul;55(5):727-41 [PMID: 15604713]
  95. Plant Biotechnol J. 2009 Jun;7(5):391-400 [PMID: 19490502]
  96. PLoS Genet. 2011 Mar;7(3):e1002021 [PMID: 21455488]

Grants

  1. 31422046/National Natural Science Foundation of China

MeSH Term

Adaptation, Physiological
Gene Expression Profiling
Gene Expression Regulation, Plant
Genome, Plant
Homeostasis
Phosphates
Phosphorus
Plant Roots
Root Nodules, Plant
Glycine max

Chemicals

Phosphates
Phosphorus