The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels.

Xuefeng Yin, Mona Wu Orr, Hanbo Wang, Errett C Hobbs, Svetlana A Shabalina, Gisela Storz
Author Information
  1. Xuefeng Yin: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892-4417, USA.
  2. Mona Wu Orr: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892-4417, USA.
  3. Hanbo Wang: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892-4417, USA.
  4. Errett C Hobbs: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892-4417, USA.
  5. Svetlana A Shabalina: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
  6. Gisela Storz: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892-4417, USA. ORCID

Abstract

In response to low levels of magnesium (Mg ), the PhoQP two component system induces the transcription of two convergent genes, one encoding a 31-amino acid protein denoted MgtS and the second encoding a small, regulatory RNA (sRNA) denoted MgrR. Previous studies showed that the MgtS protein interacts with and stabilizes the MgtA Mg importer to increase intracellular Mg levels, while the MgrR sRNA base pairs with the eptB mRNA thus affecting lipopolysaccharide modification. Surprisingly, we found overexpression of the MgtS protein also leads to induction of the PhoRB regulon. Studies to understand this activation showed that MgtS forms a complex with a second protein, PitA, a cation-phosphate symporter. Given that the additive effect of ∆mgtA and ∆MgtS mutations on intracellular Mg concentrations seen previously is lost in the ∆pitA mutant, we suggest that MgtS binds to and prevents Mg leakage through PitA under Mg -limiting conditions. Consistent with a detrimental role of PitA in low Mg , we also observe MgrR sRNA repression of PitA synthesis. Thus, PhoQP induces the expression of two convergent small genes in response to Mg limitation whose products act to modulate PitA at different levels to increase intracellular Mg .

References

  1. Curr Opin Microbiol. 2010 Apr;13(2):198-203 [PMID: 20171928]
  2. J Bacteriol. 1986 Dec;168(3):1444-50 [PMID: 3536881]
  3. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  4. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  5. Mol Microbiol. 2008 Dec;70(6):1487-501 [PMID: 19121005]
  6. J Biol Chem. 1997 Jan 17;272(3):1440-3 [PMID: 8999810]
  7. Mol Microbiol. 2013 Jul;89(1):52-64 [PMID: 23659637]
  8. J Mol Biol. 2015 Aug 14;427(16):2586-2594 [PMID: 26150063]
  9. Nucleic Acids Res. 2017 Jan 25;45(2):775-792 [PMID: 27913725]
  10. Mol Microbiol. 2009 Dec;74(6):1314-30 [PMID: 19889087]
  11. Genes Dev. 2018 Jan 1;32(1):79-92 [PMID: 29437726]
  12. Nucleic Acids Res. 2018 Mar 16;46(5):2585-2599 [PMID: 29294046]
  13. EcoSal Plus. 2008 Sep;3(1): [PMID: 26443723]
  14. Curr Opin Microbiol. 2017 Oct;39:81-88 [PMID: 29111488]
  15. J Bacteriol. 2017 May 9;199(11): [PMID: 28289085]
  16. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  17. Curr Protoc Mol Biol. 2007 Jul;Chapter 1:Unit 1.17 [PMID: 18265391]
  18. Nat Protoc. 2009;4(1):37-43 [PMID: 19131955]
  19. Annu Rev Genet. 2013;47:625-46 [PMID: 24079267]
  20. Biochemistry. 1994 Feb 22;33(7):1766-70 [PMID: 8110778]
  21. Annu Rev Biochem. 2014;83:753-77 [PMID: 24606146]
  22. Nucleic Acids Res. 2012 Apr;40(8):3623-40 [PMID: 22180532]
  23. Cold Spring Harb Perspect Biol. 2011 Dec 01;3(12): [PMID: 20980440]
  24. Adv Genet. 2015;90:133-208 [PMID: 26296935]
  25. Science. 2016 Sep 9;353(6304):1147-51 [PMID: 27609891]
  26. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83 [PMID: 10811905]
  27. Mol Cell. 2007 Apr 27;26(2):165-74 [PMID: 17466620]
  28. Mol Microbiol. 2016 Sep;101(6):1024-38 [PMID: 27282333]
  29. J Bacteriol. 2010 Jan;192(1):59-67 [PMID: 19734312]
  30. Mol Microbiol. 2010 Mar;75(5):1215-31 [PMID: 20070527]
  31. Mol Microbiol. 2009 May;72(3):551-65 [PMID: 19426207]
  32. Mol Cell. 2016 Sep 1;63(5):884-97 [PMID: 27588604]
  33. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  34. Nucleic Acids Res. 2017 Jul 3;45(W1):W435-W439 [PMID: 28472523]
  35. Microb Cell Fact. 2018 Mar 15;17(1):42 [PMID: 29544475]
  36. Sci Signal. 2016 Dec 06;9(457):ra119 [PMID: 27923914]
  37. Gene. 1995 May 26;158(1):9-14 [PMID: 7789817]
  38. J Bacteriol. 1999 Sep;181(17):5516-20 [PMID: 10464230]
  39. Nat Chem Biol. 2013 Jan;9(1):59-64 [PMID: 23160002]
  40. J Bacteriol. 2014 May;196(9):1741-52 [PMID: 24563032]
  41. Mol Cell. 2011 Sep 16;43(6):880-91 [PMID: 21925377]
  42. Genes Dev. 2001 Jul 1;15(13):1637-51 [PMID: 11445539]
  43. Cell. 2005 Aug 12;122(3):461-72 [PMID: 16096064]

Grants

  1. /U.S. National Library of Medicine
  2. ZIA HD008855-11/Intramural NIH HHS
  3. /NLM NIH HHS
  4. Pharmacology Research Associate Program (PRAT)/NIGMS NIH HHS
  5. ZIA HD001608-27/Eunice Kennedy Shriver National Institute of Child Health and Human Development
  6. /National Institute of Child Health and Human Development
  7. ZIA HD001608-27/Intramural NIH HHS
  8. ZIA HD008855-10/Eunice Kennedy Shriver National Institute of Child Health and Human Development

MeSH Term

Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Magnesium
Membrane Proteins
Phosphate Transport Proteins
RNA, Small Untranslated

Chemicals

Escherichia coli Proteins
Membrane Proteins
MgtS protein, E coli
Phosphate Transport Proteins
PitA protein, E coli
RNA, Small Untranslated
Magnesium

Word Cloud

Created with Highcharts 10.0.0MgMgtSPitAproteinlevelssmallMgrRintracellulartwosRNAresponselowmagnesiumPhoQPinducesconvergentgenesencodingdenotedsecondRNAshowedincreasealsosymportermodulatecomponentsystemtranscriptionone31-aminoacidregulatoryPreviousstudiesinteractsstabilizesMgtAimporterbasepairseptBmRNAthusaffectinglipopolysaccharidemodificationSurprisinglyfoundoverexpressionleadsinductionPhoRBregulonStudiesunderstandactivationformscomplexcation-phosphateGivenadditiveeffect∆mgtA∆mgtSmutationsconcentrationsseenpreviouslylost∆pitAmutantsuggestbindspreventsleakage-limitingconditionsConsistentdetrimentalroleobserverepressionsynthesisThusexpressionlimitationwhoseproductsactdifferentphosphateboost

Similar Articles

Cited By (25)