Role of Extracellular Carbonic Anhydrase in Dissolved Inorganic Carbon Uptake in Alkaliphilic Phototrophic Biofilm.

Tong Li, Christine E Sharp, Maryam Ataeian, Marc Strous, Dirk de Beer
Author Information
  1. Tong Li: Microsensor Group, Max-Planck-Insititute for Marine Microbiology, Bremen, Germany.
  2. Christine E Sharp: Department of Geoscience, University of Calgary, Calgary, AB, Canada.
  3. Maryam Ataeian: Department of Geoscience, University of Calgary, Calgary, AB, Canada.
  4. Marc Strous: Department of Geoscience, University of Calgary, Calgary, AB, Canada.
  5. Dirk de Beer: Microsensor Group, Max-Planck-Insititute for Marine Microbiology, Bremen, Germany.

Abstract

Alkaline Soda Lakes are extremely productive ecosystems, due to their high dissolved inorganic carbon (DIC) concentrations. Here, we studied the dynamics of the carbonate system, in particular, the role of extracellular carbonic anhydrase (eCA) of an alkaliphilic phototrophic biofilm composed of bacteria enriched from soda lake benthic mats. By using measurements with microsensors and membrane inlet mass spectrometry, combined with mathematical modeling, we show how eCA controls DIC uptake. In our experiments, the activity of eCA varied four-fold, and was controlled by the bicarbonate concentration during growth: a higher bicarbonate concentration led to lower eCA activity. Inhibition of eCA decreased both the net and the gross photosynthetic productivities of the investigated biofilms. After eCA inhibition, the efflux of carbon dioxide (CO) from the biofilms increased two- to four-fold. This could be explained by the conversion of CO, leaking from cyanobacterial cells, by eCA, to bicarbonate. Bicarbonate is then taken up again by the cyanobacteria. In suspensions, eCA reduced the CO leakage to the bulk medium from 90 to 50%. In biofilms cultivated at low bicarbonate concentration (~0.13 mM), the oxygen production was reduced by a similar ratio upon eCA inhibition. The role of eCA in intact biofilms was much less significant compared to biomass suspensions, as CO loss to the medium is reduced due to mass transfer resistance.

Keywords

References

  1. ISME J. 2013 Mar;7(3):468-76 [PMID: 23178675]
  2. J Exp Bot. 2008;59(7):1441-61 [PMID: 17578868]
  3. Annu Rev Plant Biol. 2005;56:99-131 [PMID: 15862091]
  4. J Phycol. 2009 Feb;45(1):8-15 [PMID: 27033641]
  5. Biotechnol Bioeng. 2007 Aug 1;97(5):1064-79 [PMID: 17253613]
  6. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18228-33 [PMID: 15596724]
  7. J Chem Phys. 2013 Sep 28;139(12):124507 [PMID: 24089786]
  8. Front Microbiol. 2014 Sep 02;5:459 [PMID: 25228899]
  9. J Photochem Photobiol B. 2011 Apr 4;103(1):78-86 [PMID: 21330147]
  10. Curr Opin Plant Biol. 2016 Jun;31:66-75 [PMID: 27060669]
  11. Biotechnol Biofuels. 2017 Mar 29;10:84 [PMID: 28367229]
  12. Front Microbiol. 2015 Jul 21;6:726 [PMID: 26257714]
  13. Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2641-50 [PMID: 18487130]
  14. Appl Environ Microbiol. 1993 Oct;59(10):3287-96 [PMID: 16349065]
  15. Biochem J. 2016 Jul 15;473(14):2023-32 [PMID: 27407171]
  16. Photosynth Res. 2009 Nov-Dec;102(2-3):511-22 [PMID: 19653116]
  17. Microbiology (Reading). 2007 Apr;153(Pt 4):1149-1156 [PMID: 17379724]
  18. Eur J Biochem. 1975 Nov 1;59(1):253-9 [PMID: 1249]
  19. Limnol Oceanogr Methods. 2017 May;15(5):503-517 [PMID: 30828269]
  20. Appl Environ Microbiol. 1997 Mar;63(3):973-7 [PMID: 16535560]
  21. J Biol Chem. 2002 May 24;277(21):18658-64 [PMID: 11904298]
  22. Adv Dent Res. 1997 Apr;11(1):127-32 [PMID: 9524449]
  23. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13571-6 [PMID: 10557362]
  24. Plant Physiol. 1999 May;120(1):105-12 [PMID: 10318688]
  25. Plant Physiol. 2013 Jun;162(2):1142-52 [PMID: 23656892]

Word Cloud

Created with Highcharts 10.0.0eCAbicarbonatebiofilmsCOcarbonbiofilmconcentrationreducedduedissolvedinorganicDICroleextracellularcarbonicanhydrasealkaliphilicphototrophicmassactivityfour-foldphotosyntheticinhibitioncyanobacteriasuspensionsmediumAlkalineSodaLakesextremelyproductiveecosystemshighconcentrationsstudieddynamicscarbonatesystemparticularcomposedbacteriaenrichedsodalakebenthicmatsusingmeasurementsmicrosensorsmembraneinletspectrometrycombinedmathematicalmodelingshowcontrolsuptakeexperimentsvariedcontrolledgrowth:higherledlowerInhibitiondecreasednetgrossproductivitiesinvestigatedeffluxdioxideincreasedtwo-explainedconversionleakingcyanobacterialcellsBicarbonatetakenleakagebulk9050%cultivatedlow~013mMoxygenproductionsimilarratiouponintactmuchlesssignificantcomparedbiomasslosstransferresistanceRoleExtracellularCarbonicAnhydraseDissolvedInorganicCarbonUptakeAlkaliphilicPhototrophicBiofilmproductivity

Similar Articles

Cited By