- Robert Viator: Department of Mathematics, Southern Methodist University, Dallas, TX.
- Braxton Osting: Department of Mathematics, University of Utah, Salt Lake City, UT. ORCID
We consider Steklov eigenvalues of reflection-symmetric, nearly circular, planar domains. Treating such domains as perturbations of the disc, we obtain a second-order formal asymptotic estimate in the domain perturbation parameter. We conclude with a discussion of implications for isoperimetric inequalities. Namely, our results corroborate the results of Weinstock and Brock that state, respectively, that the disc is the maximizer for the area and perimeter constrained problems. They also support the result of Hersch, Payne and Schiffer that the product of the first two eigenvalues is maximal among all open planar sets of equal perimeter. In addition, our results imply that the disc is not the maximizer of the area constrained problems for higher even numbered Steklov eigenvalues, as suggested by previous numerical results.