Personalized Tuberculosis Treatment Through Model-Informed Dosing of Rifampicin.

Stijn W van Beek, Rob Ter Heine, Ron J Keizer, Cecile Magis-Escurra, Rob E Aarnoutse, Elin M Svensson
Author Information
  1. Stijn W van Beek: Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. ORCID
  2. Rob Ter Heine: Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. ORCID
  3. Ron J Keizer: InsightRX, San Francisco, CA, USA. ORCID
  4. Cecile Magis-Escurra: Department of Respiratory Diseases, Radboud University Medical Center-Dekkerswald, Groesbeek, The Netherlands.
  5. Rob E Aarnoutse: Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
  6. Elin M Svensson: Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. Elin.Svensson@radboudumc.nl. ORCID

Abstract

BACKGROUND AND OBJECTIVE: This study proposes a model-informed approach for therapeutic drug monitoring (TDM) of rifampicin to improve tuberculosis (TB) treatment.
METHODS: Two datasets from pulmonary TB patients were used: a pharmacokinetic study (34 patients, 373 samples), and TDM data (96 patients, 391 samples) collected at Radboud University Medical Center, The Netherlands. Nine suitable population pharmacokinetic models of rifampicin were identified in the literature and evaluated on the datasets. A model developed by Svensson et al. was found to be the most suitable based on graphical goodness of fit, residual diagnostics, and predictive performance. Prediction of individual area under the concentration-time curve from time zero to 24 h (AUC) and maximum concentration (C) employing various sampling strategies was compared with a previously established linear regression TDM strategy, using sampling at 2, 4, and 6 h, in terms of bias and precision (mean error [ME] and root mean square error [RMSE]).
RESULTS: A sampling strategy using 2- and 4-h blood collection was selected to be the most suitable. The bias and precision of the two strategies were comparable, except that the linear regression strategy was more biased in prediction of the AUC than the model-informed approach (ME of 9.9% and 1.5%, respectively). A comparison of resulting dose advice, using predictions on a simulated dataset, showed no significant difference in sensitivity or specificity between the two methods. The model was successfully implemented in the InsightRX precision dosing platform.
CONCLUSION: Blood sampling at 2 and 4 h, combined with model-based prediction, can be used instead of the currently used linear regression strategy, shortening the sampling by 2 h and one sampling point without performance loss while simultaneously offering flexibility in sampling times.

References

  1. J Pharmacokinet Pharmacodyn. 2001 Oct;28(5):481-504 [PMID: 11768292]
  2. Antimicrob Agents Chemother. 2003 Jul;47(7):2118-24 [PMID: 12821456]
  3. Clin Pharmacokinet. 2004;43(6):395-404 [PMID: 15086276]
  4. Clin Pharmacokinet. 2005;44(10):1051-65 [PMID: 16176118]
  5. Antimicrob Agents Chemother. 2007 Jul;51(7):2546-51 [PMID: 17452486]
  6. Comput Methods Programs Biomed. 2008 May;90(2):154-66 [PMID: 18215437]
  7. Antimicrob Agents Chemother. 2008 Jun;52(6):2138-48 [PMID: 18391026]
  8. Antimicrob Agents Chemother. 2009 Jul;53(7):2974-81 [PMID: 19380594]
  9. AAPS J. 2011 Jun;13(2):143-51 [PMID: 21302010]
  10. J Formos Med Assoc. 2011 Jun;110(6):372-81 [PMID: 21741005]
  11. Pulm Pharmacol Ther. 2012 Feb;25(1):83-6 [PMID: 22179055]
  12. Antimicrob Agents Chemother. 2012 Apr;56(4):2091-8 [PMID: 22252827]
  13. Antimicrob Agents Chemother. 2012 Jun;56(6):3232-8 [PMID: 22411614]
  14. Baillieres Clin Gastroenterol. 1990 Jun;4(2):361-73 [PMID: 2282381]
  15. Br J Clin Pharmacol. 2013 Apr;75(4):1068-80 [PMID: 23148919]
  16. J Clin Pharm Ther. 2013 Feb;38(1):56-61 [PMID: 23167603]
  17. CPT Pharmacometrics Syst Pharmacol. 2013 Jun 26;2:e50 [PMID: 23836189]
  18. J Infect Dis. 2013 Nov 1;208(9):1464-73 [PMID: 23901086]
  19. Ther Drug Monit. 2014 Dec;36(6):746-51 [PMID: 24784025]
  20. Drugs. 2014 Jun;74(8):839-54 [PMID: 24846578]
  21. Int J Antimicrob Agents. 2014 Sep;44(3):229-34 [PMID: 24985091]
  22. Theor Biol Med Model. 2014 Sep 05;11:39 [PMID: 25192585]
  23. Lancet Diabetes Endocrinol. 2014 Sep;2(9):677 [PMID: 25194885]
  24. Am J Respir Crit Care Med. 2015 May 1;191(9):1058-65 [PMID: 25654354]
  25. Antimicrob Agents Chemother. 2015 Jul;59(7):3800-7 [PMID: 25870068]
  26. Antimicrob Agents Chemother. 2015 Aug;59(8):4907-13 [PMID: 26055359]
  27. Clin Pharmacol Ther. 2015 Dec;98(6):622-9 [PMID: 26260983]
  28. J Antimicrob Chemother. 2015 Dec;70(12):3298-306 [PMID: 26342028]
  29. J Clin Pharmacol. 2016 May;56(5):622-7 [PMID: 26387492]
  30. Antimicrob Agents Chemother. 2015 Nov 09;60(1):487-94 [PMID: 26552972]
  31. Br J Clin Pharmacol. 2016 Apr;81(4):679-87 [PMID: 26613187]
  32. CPT Pharmacometrics Syst Pharmacol. 2017 Feb;6(2):87-109 [PMID: 27884052]
  33. Lancet Infect Dis. 2017 Jan;17(1):39-49 [PMID: 28100438]
  34. Intern Med J. 2017 May;47(5):593-600 [PMID: 28503880]
  35. Clin Pharmacol Ther. 2018 Apr;103(4):674-683 [PMID: 28653479]
  36. J Infect Dis. 2018 Aug 14;218(6):991-999 [PMID: 29718390]
  37. Clin Infect Dis. 2018 Jun 18;67(1):34-41 [PMID: 29917079]
  38. CPT Pharmacometrics Syst Pharmacol. 2018 Dec;7(12):785-787 [PMID: 30255663]
  39. Int J Clin Pharmacol Ther. 1995 Oct;33(10):531-6 [PMID: 8574501]
  40. Antimicrob Agents Chemother. 1997 Dec;41(12):2670-9 [PMID: 9420037]

MeSH Term

Antitubercular Agents
Area Under Curve
Datasets as Topic
Dose-Response Relationship, Drug
Drug Administration Schedule
Drug Monitoring
Humans
Linear Models
Models, Biological
Precision Medicine
Rifampin
Tuberculosis

Chemicals

Antitubercular Agents
Rifampin

Word Cloud

Created with Highcharts 10.0.0samplingstrategyTDMpatientssuitablelinearregressionusingprecisionmodel-informedapproachrifampicinTBdatasetspharmacokineticsamplesmodelperformancestrategies2biasmeanerrortwopredictionusedBACKGROUNDANDOBJECTIVE:This studyproposestherapeuticdrugmonitoringimprovetuberculosistreatmentMETHODS:Twopulmonaryused:study34373data96391collectedRadboudUniversityMedicalCenterNetherlandsNinepopulationmodelsidentifiedliteratureevaluateddevelopedSvenssonetalfoundbasedgraphicalgoodnessfitresidualdiagnosticspredictivePredictionindividualareaconcentration-timecurvetimezero24 hAUCmaximumconcentrationCemployingvariouscomparedpreviouslyestablished46 hterms[ME]rootsquare[RMSE]RESULTS:2-4-hbloodcollectionselectedcomparableexceptbiasedAUC thanME99%15%respectivelycomparisonresultingdoseadvicepredictionssimulateddatasetshowedsignificantdifferencesensitivityspecificitymethodssuccessfullyimplementedInsightRXdosingplatformCONCLUSION:Blood4 hcombinedmodel-basedcaninsteadcurrentlyshortening2 honepointwithoutlosssimultaneouslyofferingflexibilitytimesPersonalizedTuberculosisTreatmentModel-InformedDosingRifampicin

Similar Articles

Cited By