Benchmark DFT studies on C-CN homolytic cleavage and screening the substitution effect on bond dissociation energy.

Naveen Kosar, Khurshid Ayub, Mazhar Amjad Gilani, Tariq Mahmood
Author Information
  1. Naveen Kosar: Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, 22060, Pakistan.
  2. Khurshid Ayub: Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, 22060, Pakistan.
  3. Mazhar Amjad Gilani: Department of Chemistry, COMSATS University, Lahore Campus, Lahore, Pakistan. mazhargilani@cuilahore.edu.pk.
  4. Tariq Mahmood: Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad, 22060, Pakistan. mahmood@cuiatd.edu.pk. ORCID

Abstract

Nitriles are important chemical species in organic transformations, material chemistry, and environmental sciences. Nitriles are used as cyanating reagents in many organic reactions, where the C-CN bond dissociation has an important role. The reactivity of nitriles can be better understood by studying the bond dissociation energy (BDE) of the C-CN bond. In this benchmark study, homolytic cleavage of the C-CN bond in 12 nitrile compounds is studied. Thirty-one functionals from eight different DFT classes along with three types of basis sets are employed. Theoretical results are compared with the available experimental data. Based on statistical outcomes, the CAM-B3LYP functional of the range separated hybrid GGA class with Pople 6-311G(d,p) basis set provides the most accurate results for calculating the BDE of the C-CN bond. The mean absolute error (MAE) value is 0.06 kcal mol, whereas standard deviation (SD) and Pearson's correlation (R) are 2.79 kcal mol and 0.96, respectively, when compared with experimental data. The substitutional effect on the homolytic cleavage (BDE) of respective bonds in differently substituted nitriles is also investigated. The BDE results indicate that electron withdrawing groups (EWGs) lower the BDE, while electron donating groups (EDGs) increase the BDE of the C-CN bond. The NBO and HOMO-LUMO orbitals analyses are also performed to further elaborate the variational BDE patterns of C-CN bond cleavage. Graphical Abstract Benchmark DFT studies on C-CN homolytic cleavage.

Keywords

References

  1. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  2. J Biol Chem. 2001 Aug 24;276(34):32101-8 [PMID: 11408479]
  3. Chem Rev. 2003 May;103(5):1793-873 [PMID: 12744694]
  4. Org Lett. 2003 Sep 4;5(18):3237-9 [PMID: 12943396]
  5. Phys Rev Lett. 2003 Oct 3;91(14):146401 [PMID: 14611541]
  6. Angew Chem Int Ed Engl. 2004 Jan;43(2):206-9 [PMID: 14695610]
  7. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2673-7 [PMID: 14981235]
  8. J Comput Chem. 2004 Sep;25(12):1463-73 [PMID: 15224390]
  9. J Chem Phys. 2004 May 8;120(18):8425-33 [PMID: 15267767]
  10. J Chem Phys. 2004 Aug 22;121(8):3405-16 [PMID: 15303903]
  11. Regul Pept. 2005 May 15;128(1):43-50 [PMID: 15721486]
  12. Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305 [PMID: 16240044]
  13. J Phys Chem B. 2005 Aug 25;109(33):15677-83 [PMID: 16852988]
  14. J Org Chem. 2006 Dec 8;71(25):9470-4 [PMID: 17137375]
  15. Chem Biodivers. 2006 Dec;3(12):1279-87 [PMID: 17193242]
  16. Science. 1993 Dec 3;262(5139):1554-7 [PMID: 17829385]
  17. Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20 [PMID: 18989472]
  18. J Chem Theory Comput. 2007;3(2):407-433 [PMID: 19002267]
  19. Chem Commun (Camb). 2009 Jun 7;(21):3077-9 [PMID: 19462092]
  20. Naturwissenschaften. 2009 Nov;96(11):1265-92 [PMID: 19760276]
  21. Phys Chem Chem Phys. 2009 Oct 21;11(39):8689-97 [PMID: 20449011]
  22. J Org Chem. 2010 Jul 2;75(13):4530-41 [PMID: 20507166]
  23. J Phys Chem A. 2011 Aug 25;115(33):9308-13 [PMID: 21806069]
  24. Chem Commun (Camb). 2011 Nov 21;47(43):11963-5 [PMID: 21969109]
  25. Chem Commun (Camb). 2013 Mar 7;49(19):1906-8 [PMID: 23282559]
  26. Chem Rev. 2013 Aug 14;113(8):5817-47 [PMID: 23679868]
  27. Chemistry. 2014 Jan 7;20(2):410-5 [PMID: 24307550]
  28. Environ Sci Technol. 2015 May 19;49(10):6018-28 [PMID: 25909816]
  29. J Chem Theory Comput. 2015 Jun 9;11(6):2879-88 [PMID: 26575577]
  30. J Chem Theory Comput. 2005 May;1(3):415-32 [PMID: 26641508]
  31. J Chem Phys. 2016 Dec 21;145(23):234306 [PMID: 28010100]
  32. J Chem Theory Comput. 2018 Sep 11;14(9):4651-4661 [PMID: 30052431]
  33. Med Sci Law. 1981 Oct;21(4):288-94 [PMID: 7321811]
  34. BMJ. 1996 Jul 6;313(7048):41-2 [PMID: 8664775]
  35. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 [PMID: 9900728]
  36. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 [PMID: 9944570]

Grants

  1. 3013, 5309/Higher Education Commision, Pakistan

Word Cloud

Created with Highcharts 10.0.0bondC-CNBDEcleavagedissociationhomolyticDFTenergyresultsBenchmarkNitrilesimportantorganicnitrilesbasiscomparedexperimentaldata0effectalsoelectrongroupsstudieschemicalspeciestransformationsmaterialchemistryenvironmentalsciencesusedcyanatingreagentsmanyreactionsrolereactivitycanbetterunderstoodstudyingbenchmarkstudy12nitrilecompoundsstudiedThirty-onefunctionalseightdifferentclassesalongthreetypessetsemployedTheoreticalavailableBasedstatisticaloutcomesCAM-B3LYPfunctionalrangeseparatedhybridGGAclassPople6-311GdpsetprovidesaccuratecalculatingmeanabsoluteerrorMAEvalue06 kcal molwhereasstandarddeviationSDPearson'scorrelationR279 kcal mol96respectivelysubstitutionalrespectivebondsdifferentlysubstitutedinvestigatedindicatewithdrawingEWGslowerdonatingEDGsincreaseNBOHOMO-LUMOorbitalsanalysesperformedelaboratevariationalpatternsGraphicalAbstracton C-CNscreeningsubstitutionBondNitrile

Similar Articles

Cited By