Complex Relationships between the Blue Pigment Marennine and Marine Bacteria of the Genus .

Charlotte Falaise, Adèle James, Marie-Agnès Travers, Marie Zanella, Myriam Badawi, Jean-Luc Mouget
Author Information
  1. Charlotte Falaise: Laboratoire Mer Molécule Santé (EA 2160, FR CNRS 3473 IUML), Le Mans Université, 72000 Le Mans, France. charlotte.falaise@gmail.com.
  2. Adèle James: Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, 29280 Plouzané, France. adele.james@hotmail.fr.
  3. Marie-Agnès Travers: Ifremer (RBE-SG2M-LGPMM) Laboratoire de Génétique et de Pathologie des Mollusques Marins, Station La Tremblade, Avenue Mus Loup, F-17390 La Tremblade, France. marie.agnes.travers@ifremer.fr.
  4. Marie Zanella: Laboratoire Mer Molécule Santé (EA 2160, FR CNRS 3473 IUML), Le Mans Université, 72000 Le Mans, France. marie.zanella@univ-lemans.fr.
  5. Myriam Badawi: Laboratoire Mer Molécule Santé (EA 2160, FR CNRS 3473 IUML), Le Mans Université, 72000 Le Mans, France. myriam.badawi@univ-lemans.fr. ORCID
  6. Jean-Luc Mouget: Laboratoire Mer Molécule Santé (EA 2160, FR CNRS 3473 IUML), Le Mans Université, 72000 Le Mans, France. jean-luc.mouget@univ-lemans.fr.

Abstract

Marennine, the water-soluble blue pigment produced by the marine diatom , is known to display antibacterial activities. Previous studies have demonstrated a prophylactic effect of marennine on bivalve larvae challenged with a pathogenic , suggesting that the blue is a good candidate for applications in aquaculture as a source of a natural antimicrobial agent. Indeed, the genus is ubiquitous in aquaculture ecosystems, and regular events of pathogenic invasion cause some of the biggest losses worldwide. To better characterize the effects of marennine on , a panel of 30 strains belonging to 10 different species was tested, including bivalve pathogenic species (e.g., and ). strains were first exposed to 10 and 25 µg mL of Blue Water (BW), a concentrated culture supernatant of containing marennine. This screening evidenced a great diversity in responses, from growth stimulation to a total inhibition, at both the interspecific or intraspecific level. In a second series of experiments, 10 strains were exposed to BW at concentrations ranging from 5 to 80 µg mL. The highest concentrations of BW did not systematically result in the highest growth inhibition as hormetic responses-opposite effects regarding the concentration-were occasionally evidenced. The relationships between marennine and strains appear more complex than expected and justify further study-in particular, on the mechanisms of action-before considering applications as a natural prophylactic or antibiotic agent in aquaculture.

Keywords

References

  1. Crit Rev Toxicol. 2001 Jul;31(4-5):353-424 [PMID: 11504172]
  2. Hum Exp Toxicol. 2002 Feb;21(2):91-7 [PMID: 12102503]
  3. FEMS Microbiol Lett. 2004 Feb 9;231(1):145-52 [PMID: 14769479]
  4. Dose Response. 2006 Oct 17;5(2):150-62 [PMID: 18648603]
  5. Int J Toxicol. 2010 May-Jun;29(3):235-46 [PMID: 20448256]
  6. J Agric Food Chem. 2012 Apr 11;60(14):3599-605 [PMID: 22423636]
  7. Biochim Biophys Acta. 2013 Feb;1828(2):614-22 [PMID: 22989726]
  8. Crit Rev Toxicol. 2013 Aug;43(7):580-606 [PMID: 23875765]
  9. Pest Manag Sci. 2014 May;70(5):698-707 [PMID: 24446388]
  10. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7427-32 [PMID: 24799698]
  11. Mar Drugs. 2014 May 28;12(6):3161-89 [PMID: 24879542]
  12. Dose Response. 2014 Apr 11;12(3):466-79 [PMID: 25249836]
  13. Curr Opin Microbiol. 2015 Apr;24:104-12 [PMID: 25662921]
  14. Curr Opin Microbiol. 2015 Jun;25:67-72 [PMID: 26025019]
  15. Nat Rev Microbiol. 2015 Aug;13(8):497-508 [PMID: 26145732]
  16. J Invertebr Pathol. 2015 Oct;131:11-31 [PMID: 26210496]
  17. Nanomedicine. 2016 Aug;12(6):1499-509 [PMID: 26970029]
  18. BMC Bioinformatics. 2016 Apr 19;17:172 [PMID: 27094401]
  19. Mar Drugs. 2016 Sep 02;14(9): [PMID: 27598176]
  20. ISME J. 2017 Apr;11(4):1043-1052 [PMID: 27922600]
  21. PLoS One. 2017 Jul 17;12(7):e0181321 [PMID: 28715457]
  22. Sci Rep. 2017 Aug 29;7(1):9671 [PMID: 28851910]
  23. Lett Appl Microbiol. 2018 Feb;66(2):145-152 [PMID: 29193174]
  24. Aquat Toxicol. 2019 Apr;209:13-25 [PMID: 30684731]
  25. J Bacteriol. 1974 May;118(2):764-7 [PMID: 4828312]

Grants

  1. Agreement No 734708/GHANA/H2020-MSCA-RISE-2016 (JLM)/Horizon 2020 Research and Innovation Program GHaNA (The Genus Haslea, New marine resources for blue biotechnology and Aquaculture)

MeSH Term

Animals
Anti-Bacterial Agents
Aquaculture
Aquatic Organisms
Bivalvia
Diatoms
Larva
Phenols
Vibrio

Chemicals

Anti-Bacterial Agents
Phenols
marennine

Word Cloud

Created with Highcharts 10.0.0marenninestrainspathogenicaquaculture10BWMarennineblueantibacterialprophylacticbivalveapplicationsnaturalagenteffectsspeciesexposedµgmLBlueevidencedgrowthinhibitionconcentrationshighestwater-solublepigmentproducedmarinediatomknowndisplayactivitiesPreviousstudiesdemonstratedeffectlarvaechallengedsuggestinggoodcandidatesourceantimicrobialIndeedgenusubiquitousecosystemsregulareventsinvasioncausebiggestlossesworldwidebettercharacterizepanel30belongingdifferenttestedincludingegfirst25Waterconcentratedculturesupernatantcontainingscreeninggreatdiversityresponsesstimulationtotalinterspecificintraspecificlevelsecondseriesexperimentsranging580systematicallyresulthormeticresponses-oppositeregardingconcentration-wereoccasionallyrelationshipsappearcomplexexpectedjustifystudy-inparticularmechanismsaction-beforeconsideringantibioticComplexRelationshipsPigmentMarineBacteriaGenusHasleaVibrioactivitydiauxiehormesis

Similar Articles

Cited By