Raman Signal Enhancement by Quasi-Fractal Geometries of Au Nanoparticles.

Richard E Darienzo, Tatsiana Mironava, Rina Tannenbaum
Author Information
  1. Richard E Darienzo: Biomedical Nanomaterials Research Laboratory, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
  2. Tatsiana Mironava: Biomedical Nanomaterials Research Laboratory, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
  3. Rina Tannenbaum: Biomedical Nanomaterials Research Laboratory, Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.

Abstract

The synthesis of star-like gold nanoparticles (SGNs) in a temperature-controlled environment allows for temperature modulation and facilitates the growth of highly branched nanoparticles. By increasing the synthesis temperature, the level of branching increases as well. These highly branched features represent a distinctly novel, quasi-fractal nanoparticle morphology, referred to herein as gold nano caltrops (GNC). The increased surface roughness, local curvature and degree of inhomogeneity of GNC lend themselves to generating improved enhancement of the scattering signals in surface-enhanced Raman spectroscopy (SERS) via a mechanism in which the localized surface plasmon sites, or "hot spots," provide the engine for the signal amplification, rather than the more conventional surface plasmon. Here, the synthesis procedure and the surface-enhancing capabilities of GNC are described and discussed.

References

  1. Nanotechnology. 2012 Mar 23;23(11):115501 [PMID: 22383452]
  2. Chem Rev. 2007 Nov;107(11):4797-862 [PMID: 17999554]
  3. Trends Biotechnol. 2013 Apr;31(4):249-57 [PMID: 23416096]
  4. Anal Chem. 2007 Feb 1;79(3):916-22 [PMID: 17263316]
  5. Biochem J. 1984 Jul 1;221(1):27-31 [PMID: 6466317]
  6. Acc Chem Res. 2011 Oct 18;44(10):1050-60 [PMID: 21919457]
  7. PLoS One. 2013 Oct 09;8(10):e77486 [PMID: 24130891]
  8. Annu Rev Phys Chem. 2007;58:267-97 [PMID: 17067281]
  9. J Phys Chem B. 2006 Sep 7;110(35):17444-51 [PMID: 16942083]
  10. Phys Chem Chem Phys. 2013 Apr 21;15(15):5301-11 [PMID: 23303267]
  11. Biophys Chem. 1988 May;30(1):3-48 [PMID: 3046672]
  12. Science. 2005 Jan 28;307(5709):538-44 [PMID: 15681376]
  13. J Phys Chem B. 2005 Jun 9;109(22):11279-85 [PMID: 16852377]
  14. Nano Lett. 2006 Apr;6(4):833-8 [PMID: 16608293]
  15. Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95 [PMID: 24711218]
  16. Biochem J. 1983 Dec 1;215(3):465-9 [PMID: 6362659]
  17. Curr Pharm Biotechnol. 2010 Sep 1;11(6):654-61 [PMID: 20497112]
  18. Sci Rep. 2013;3:2624 [PMID: 24022059]
  19. Anal Bioanal Chem. 2012 Jan;402(3):1093-100 [PMID: 22124755]
  20. Phys Med Biol. 2000 Feb;45(2):R1-59 [PMID: 10701500]
  21. J Am Chem Soc. 2010 Aug 11;132(31):10903-10 [PMID: 20681724]
  22. Small. 2011 Mar 7;7(5):625-33 [PMID: 21302357]
  23. Biophys J. 1998 Mar;74(3):1533-40 [PMID: 9512049]
  24. J Am Chem Soc. 2009 Oct 14;131(40):14466-72 [PMID: 19807188]
  25. J Am Chem Soc. 2012 Sep 5;134(35):14542-54 [PMID: 22920241]
  26. Nano Lett. 2007 Mar;7(3):729-32 [PMID: 17279802]
  27. Science. 2002 Aug 30;297(5586):1536-40 [PMID: 12202825]
  28. Chem Rev. 2004 Jan;104(1):293-346 [PMID: 14719978]
  29. Nanomedicine. 2011 Feb;7(1):115-22 [PMID: 20817123]
  30. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:601-26 [PMID: 20636091]
  31. Opt Lett. 2008 Apr 1;33(7):714-6 [PMID: 18382527]
  32. Trends Biochem Sci. 1989 Jun;14(6):212-3 [PMID: 2763333]
  33. Chem Soc Rev. 2008 Sep;37(9):1783-91 [PMID: 18762828]
  34. Nat Biotechnol. 2008 Jan;26(1):83-90 [PMID: 18157119]
  35. Analyst. 2006 Aug;131(8):875-85 [PMID: 17028718]
  36. Food Chem. 2012 Nov 15;135(2):845-50 [PMID: 22868168]
  37. J Am Chem Soc. 2009 Dec 2;131(47):17042-3 [PMID: 19891442]
  38. Anal Chim Acta. 2011 May 5;693(1-2):7-25 [PMID: 21504806]
  39. Anal Chem. 2007 Jun 1;79(11):4215-21 [PMID: 17458937]
  40. Anal Chim Acta. 2011 Nov 7;706(1):8-24 [PMID: 21995909]
  41. J Biophotonics. 2011 Jun;4(6):453-63 [PMID: 21298811]
  42. Nano Lett. 2006 Apr;6(4):683-8 [PMID: 16608264]
  43. Science. 2008 Jul 18;321(5887):388-92 [PMID: 18583578]

Grants

  1. T32 GM127253/NIGMS NIH HHS
  2. DE-SC0012704/US Department of Energy

MeSH Term

Fractals
Gold
Metal Nanoparticles
Spectrum Analysis, Raman

Chemicals

Gold

Word Cloud

Created with Highcharts 10.0.0synthesisGNCsurfacegoldnanoparticlestemperaturehighlybranchedRamanplasmonstar-likeSGNstemperature-controlledenvironmentallowsmodulationfacilitatesgrowthincreasinglevelbranchingincreaseswellfeaturesrepresentdistinctlynovelquasi-fractalnanoparticlemorphologyreferredhereinnanocaltropsincreasedroughnesslocalcurvaturedegreeinhomogeneitylendgeneratingimprovedenhancementscatteringsignalssurface-enhancedspectroscopySERSviamechanismlocalizedsites"hotspots"provideenginesignalamplificationratherconventionalproceduresurface-enhancingcapabilitiesdescribeddiscussedSignalEnhancementQuasi-FractalGeometriesAuNanoparticles

Similar Articles

Cited By