QSAR Prediction Model to Search for Compounds with Selective Cytotoxicity Against Oral Cell Cancer.

Junko Nagai, Mai Imamura, Hiroshi Sakagami, Yoshihiro Uesawa
Author Information
  1. Junko Nagai: Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan. nagai-j@my-pharm.ac.jp. ORCID
  2. Mai Imamura: Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan. y151038@std.my-pharm.ac.jp.
  3. Hiroshi Sakagami: Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan. sakagami@dent.meikai.ac.jp.
  4. Yoshihiro Uesawa: Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan. uesawa@my-pharm.ac.jp. ORCID

Abstract

: Anticancer drugs often have strong toxicity against tumours and normal cells. Some natural products demonstrate high tumour specificity. We have previously reported the cytotoxic activity and tumour specificity of various chemical compounds. In this study, we constructed a database of previously reported compound data and predictive models to screen a new anticancer drug. : We collected compound data from our previous studies and built a database for analysis. Using this database, we constructed models that could predict cytotoxicity and tumour specificity using random forest method. The prediction performance was evaluated using an external validation set. : A total of 494 compounds were collected, and these activities and chemical structure data were merged as database for analysis. The structure-toxicity relationship prediction model showed higher prediction accuracy than the tumour selectivity prediction model. Descriptors with high contribution differed for tumour and normal cells. : Further study is required to construct a tumour selective toxicity prediction model with higher predictive accuracy. Such a model is expected to contribute to the screening of candidate compounds for new anticancer drugs.

Keywords

References

  1. J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58 [PMID: 14632445]
  2. Anticancer Res. 2004 May-Jun;24(3a):1481-8 [PMID: 15274313]
  3. In Vivo. 2005 Jan-Feb;19(1):119-23 [PMID: 15796163]
  4. In Vivo. 2005 Jan-Feb;19(1):157-63 [PMID: 15796168]
  5. In Vivo. 2005 Jan-Feb;19(1):277-82 [PMID: 15796187]
  6. Anticancer Res. 2005 Nov-Dec;25(6B):3951-5 [PMID: 16309182]
  7. Anticancer Res. 2005 Nov-Dec;25(6B):4053-9 [PMID: 16309199]
  8. Anticancer Res. 2006 Jul-Aug;26(4B):2883-6 [PMID: 16886609]
  9. Anticancer Res. 2006 Sep-Oct;26(5A):3373-80 [PMID: 17094455]
  10. Anticancer Res. 2007 Nov-Dec;27(6B):4047-51 [PMID: 18225569]
  11. Anticancer Res. 2007 Nov-Dec;27(6B):4053-7 [PMID: 18225570]
  12. Anticancer Res. 2007 Nov-Dec;27(6B):4059-63 [PMID: 18225571]
  13. Anticancer Res. 2007 Nov-Dec;27(6B):4065-9 [PMID: 18225572]
  14. Anticancer Res. 2007 Nov-Dec;27(6B):4233-8 [PMID: 18225595]
  15. Anticancer Res. 2008 Jan-Feb;28(1A):151-8 [PMID: 18383839]
  16. Anticancer Res. 2008 Jan-Feb;28(1A):277-81 [PMID: 18383857]
  17. Anticancer Res. 2008 Mar-Apr;28(2A):997-1003 [PMID: 18507047]
  18. Anticancer Res. 2009 Jun;29(6):2265-71 [PMID: 19528491]
  19. Anticancer Res. 2009 Aug;29(8):3079-86 [PMID: 19661319]
  20. Oral Oncol. 2009 Dec;45(12):1015-20 [PMID: 19828360]
  21. Anticancer Res. 2009 Dec;29(12):5019-22 [PMID: 20044611]
  22. Anticancer Res. 2010 Jan;30(1):129-33 [PMID: 20150627]
  23. Anticancer Res. 2010 Mar;30(3):837-41 [PMID: 20393004]
  24. Anticancer Res. 2011 Feb;31(2):515-20 [PMID: 21378332]
  25. Anticancer Res. 2011 Dec;31(12):4231-8 [PMID: 22199286]
  26. Anticancer Res. 2013 Aug;33(8):3061-8 [PMID: 23898061]
  27. PLoS One. 2013 Dec 20;8(12):e82834 [PMID: 24376587]
  28. Anticancer Res. 2014 Apr;34(4):1743-50 [PMID: 24692705]
  29. Anticancer Res. 2014 Jul;34(7):3543-8 [PMID: 24982367]
  30. Anticancer Res. 2014 Sep;34(9):4877-84 [PMID: 25202069]
  31. Anticancer Res. 2014 Oct;34(10):5405-11 [PMID: 25275035]
  32. Anticancer Res. 2015 Oct;35(10):5299-307 [PMID: 26408690]
  33. Anticancer Res. 2015 Oct;35(10):5341-51 [PMID: 26408695]
  34. Anticancer Res. 2016 Nov;36(11):5803-5812 [PMID: 27793902]
  35. In Vivo. 2016 11-12;30(6):777-785 [PMID: 27815461]
  36. Anticancer Res. 2017 Mar;37(3):1023-1029 [PMID: 28314260]
  37. Anticancer Res. 2017 Mar;37(3):1091-1098 [PMID: 28314269]
  38. Anticancer Res. 2017 Nov;37(11):5919-5924 [PMID: 29061770]
  39. Anticancer Res. 2017 Nov;37(11):6161-6168 [PMID: 29061797]
  40. Anticancer Res. 2017 Nov;37(11):6169-6176 [PMID: 29061798]
  41. Anticancer Res. 2018 Feb;38(2):763-770 [PMID: 29374700]
  42. Anticancer Res. 2018 Feb;38(2):817-823 [PMID: 29374707]
  43. In Vivo. 2018 May-Jun;32(3):479-486 [PMID: 29695549]
  44. In Vivo. 2018 May-Jun;32(3):541-547 [PMID: 29695558]
  45. Int J Mol Sci. 2018 Oct 03;19(10):null [PMID: 30282923]
  46. Molecules. 2018 Nov 06;23(11):null [PMID: 30404161]

Grants

  1. KAKENHI/Japan Society for the Promotion of Science

Word Cloud

Created with Highcharts 10.0.0tumourprediction:databasemodelspecificitycompoundsdatadrugstoxicitynormalcellsnaturalproductshighpreviouslyreportedchemicalstudyconstructedcompoundpredictivemodelsnewanticancercollectedanalysisusingrandomforestrelationshiphigheraccuracyAnticanceroftenstrongtumoursdemonstratecytotoxicactivityvariousscreendrugpreviousstudiesbuiltUsingpredictcytotoxicitymethodperformanceevaluatedexternalvalidationsettotal494activitiesstructuremergedstructure-toxicityshowedselectivityDescriptorscontributiondifferedrequiredconstructselectiveexpectedcontributescreeningcandidateQSARPredictionModelSearchCompoundsSelectiveCytotoxicityOralCellCancermachinelearningquantitativestructure-activitytumour-specificity

Similar Articles

Cited By