Charting cellular identity during human in vitro β-cell differentiation.

Adrian Veres, Aubrey L Faust, Henry L Bushnell, Elise N Engquist, Jennifer Hyoje-Ryu Kenty, George Harb, Yeh-Chuin Poh, Elad Sintov, Mads Gürtler, Felicia W Pagliuca, Quinn P Peterson, Douglas A Melton
Author Information
  1. Adrian Veres: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  2. Aubrey L Faust: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  3. Henry L Bushnell: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  4. Elise N Engquist: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  5. Jennifer Hyoje-Ryu Kenty: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  6. George Harb: Semma Therapeutics, Cambridge, MA, USA.
  7. Yeh-Chuin Poh: Semma Therapeutics, Cambridge, MA, USA.
  8. Elad Sintov: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  9. Mads Gürtler: Semma Therapeutics, Cambridge, MA, USA.
  10. Felicia W Pagliuca: Semma Therapeutics, Cambridge, MA, USA.
  11. Quinn P Peterson: Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
  12. Douglas A Melton: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. dmelton@harvard.edu.

Abstract

In vitro differentiation of human stem cells can produce pancreatic β-cells; the loss of this insulin-secreting cell type underlies type 1 diabetes. Here, as a step towards understanding this differentiation process, we report the transcriptional profiling of more than 100,000 human cells undergoing in vitro β-cell differentiation, and describe the cells that emerged. We resolve populations that correspond to β-cells, α-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population that resembles enterochromaffin cells. We show that endocrine cells maintain their identity in culture in the absence of exogenous growth factors, and that changes in gene expression associated with in vivo β-cell maturation are recapitulated in vitro. We implement a scalable re-aggregation technique to deplete non-endocrine cells and identify CD49a (also known as ITGA1) as a surface marker of the β-cell population, which allows magnetic sorting to a purity of 80%. Finally, we use a high-resolution sequencing time course to characterize gene-expression dynamics during the induction of human pancreatic endocrine cells, from which we develop a lineage model of in vitro β-cell differentiation. This study provides a perspective on human stem-cell differentiation, and will guide future endeavours that focus on the differentiation of pancreatic islet cells, and their applications in regenerative medicine.

References

  1. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014). [DOI: 10.1016/j.cell.2014.09.040]
  2. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014). [DOI: 10.1038/nbt.3033]
  3. Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 34, 1759–1772(2015). [DOI: 10.15252/embj.201591058]
  4. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015). [DOI: 10.1016/j.cell.2015.04.044]
  5. Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016). [DOI: 10.1016/j.cels.2016.08.011]
  6. Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016). [DOI: 10.1016/j.cmet.2016.08.020]
  7. Xin, Y. et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab. 24, 608–615 (2016). [DOI: 10.1016/j.cmet.2016.08.018]
  8. Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385–394.e3 (2016). [DOI: 10.1016/j.cels.2016.09.002]
  9. Enge, M. et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321–330.e14 (2017). [DOI: 10.1016/j.cell.2017.09.004]
  10. Byrnes, L. E. et al. Lineage dynamics of murine pancreatic development at single-cell resolution. Nat. Commun. 9, 3922 (2018). [DOI: 10.1038/s41467-018-06176-3]
  11. Scavuzzo, M. A. et al. Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat. Commun. 9, 3356 (2018). [DOI: 10.1038/s41467-018-05740-1]
  12. Sharon, N. et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell 176, 790–804 (2019). [DOI: 10.1016/j.cell.2018.12.003]
  13. Xie, R. et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 12, 224–237 (2013). [DOI: 10.1016/j.stem.2012.11.023]
  14. Hrvatin, S. et al. Differentiated human stem cells resemble fetal, not adult, β cells. Proc. Natl Acad. Sci. USA 111, 3038–3043 (2014 [DOI: 10.1073/pnas.1400709111]
  15. Petersen, M. B. K. et al. Single-cell gene expression analysis of a human ESC model of pancreatic endocrine development reveals different paths to β-cell differentiation. Stem Cell Reports 9, 1246–1261 (2017). [DOI: 10.1016/j.stemcr.2017.08.009]
  16. Rutter, G. A., Pullen, T. J., Hodson, D. J. & Martinez-Sanchez, A. Pancreatic beta-cell identity, glucose sensing and the control of insulin secretion. Biochem. J. 466, 203–218 (2015). [DOI: 10.1042/BJ20141384]
  17. Thurmond, D. C. in Mechanisms of Insulin Action (eds Pessin, J. E. & Saltiel, A. R.) 52–70 (Springer, New York, 2007).
  18. Aslamy, A. & Thurmond, D. C. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? Am. J. Physiol. 312, R739–R752 (2017).
  19. Arda, H. E. et al. Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function. Cell Metab. 23, 909–920 (2016). [DOI: 10.1016/j.cmet.2016.04.002]
  20. Blum, B. et al. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat. Biotechnol. 30, 261–264 (2012). [DOI: 10.1038/nbt.2141]
  21. Thorrez, L. et al. Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res. 21, 95–105 (2011). [DOI: 10.1101/gr.109173.110]
  22. Kelly, O. G. et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat. Biotechnol. 29, 750–756 (2011). [DOI: 10.1038/nbt.1931]
  23. Riedel, M. J. et al. Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55, 372–381 (2012). [DOI: 10.1007/s00125-011-2344-9]
  24. Spijker, H. S. et al. Loss of β-cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits. Diabetes 64, 2928–2938 (2015). [DOI: 10.2337/db14-1752]
  25. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16 (2017). [DOI: 10.1016/j.cell.2017.05.034]
  26. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017). [DOI: 10.1038/nature24489]
  27. Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015). [DOI: 10.1038/nature14966]
  28. Martin, A. M. et al. The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol. Motil. 29, e13046 (2017). [DOI: 10.1111/nmo.13046]
  29. Gupta, S. K. et al. NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations. Stem Cell Res. 29, 220–231 (2018). [DOI: 10.1016/j.scr.2018.04.010]
  30. Almaça, J. et al. Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Reports 17, 3281–3291 (2016). [DOI: 10.1016/j.celrep.2016.11.072]
  31. Goyvaerts, L., Schraenen, A. & Schuit, F. Serotonin competence of mouse beta cells during pregnancy. Diabetologia 59, 1356–1363 (2016). [DOI: 10.1007/s00125-016-3951-2]
  32. Ohta, Y. et al. Convergence of the insulin and serotonin programs in the pancreatic β-cell. Diabetes 60, 3208–3216 (2011). [DOI: 10.2337/db10-1192]
  33. Lu, T. T.-H. et al. The polycomb-dependent epigenome controls β cell dysfunction, dedifferentiation, and diabetes. Cell Metab. 27, 1294–1308.e7 (2018). [DOI: 10.1016/j.cmet.2018.04.013]
  34. Britt, L. D., Stojeba, P. C., Scharp, C. R., Greider, M. H. & Scharp, D. W. Neonatal pig pseudo-islets: a product of selective aggregation. Diabetes 30, 580–583 (1981). [DOI: 10.2337/diab.30.7.580]
  35. Agulnick, A. D. et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl. Med. 4, 1214–1222 (2015). [DOI: 10.5966/sctm.2015-0079]
  36. Tsoukalas, N. et al. Pancreatic carcinoids (serotonin-producing pancreatic neuroendocrine neoplasms): report of 5 cases and review of the literature. Medicine (Baltimore) 96, e6201 (2017). [DOI: 10.1097/MD.0000000000006201]
  37. Hilderink, J. et al. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. J. Cell. Mol. Med. 19, 1836–1846 (2015). [DOI: 10.1111/jcmm.12555]
  38. Ramachandran, K., Peng, X., Bokvist, K. & Stehno-Bittel, L. Assessment of re-aggregated human pancreatic islets for secondary drug screening. Br. J. Pharmacol. 171, 3010–3022 (2014). [DOI: 10.1111/bph.12622]
  39. Spijker, H. S. et al. Conversion of mature human β-cells into glucagon-producing α-cells. Diabetes 62, 2471–2480 (2013). [DOI: 10.2337/db12-1001]
  40. Zuellig, R. A. et al. Improved physiological properties of gravity-enforced reassembled rat and human pancreatic pseudo-islets. J. Tissue Eng. Regen. Med. 11, 109–120 (2017). [DOI: 10.1002/term.1891]
  41. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017). [DOI: 10.1038/nprot.2016.154]
  42. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018). [DOI: 10.1016/j.cell.2018.06.021]
  43. Traag, V., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Preprint at https://arxiv.org/abs/1810.08473 (2018).
  44. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016). [DOI: 10.1038/nmeth.3971]
  45. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018). [DOI: 10.1186/s13059-017-1382-0]
  46. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017). [DOI: 10.1038/nmeth.4150]
  47. Zhang, J. M., Kamath, G. M. & Tse, D. N. Towards a post-clustering test for differential expression. Preprint at https://www.biorxiv.org/content/10.1101/463265v1 (2018).
  48. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014). [DOI: 10.1186/gb-2014-15-2-r29]
  49. Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, article3 (2004). [DOI: 10.2202/1544-6115.1027]

Grants

  1. T32 GM007226/NIGMS NIH HHS
  2. UC4 DK104159/NIDDK NIH HHS
  3. UC4 DK104165/NIDDK NIH HHS
  4. /Howard Hughes Medical Institute

MeSH Term

Animals
Biomarkers
Cell Differentiation
Cell Lineage
Cell Separation
Humans
Insulin
Insulin-Secreting Cells
Integrin alpha1
Male
Mice
RNA-Seq
Single-Cell Analysis
Stem Cells

Chemicals

Biomarkers
Insulin
Integrin alpha1