Division of labor in honey bees is associated with transcriptional regulatory plasticity in the brain.

Adam R Hamilton, Ian M Traniello, Allyson M Ray, Arminius S Caldwell, Samuel A Wickline, Gene E Robinson
Author Information
  1. Adam R Hamilton: Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA. ORCID
  2. Ian M Traniello: Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA.
  3. Allyson M Ray: Carl R. Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA.
  4. Arminius S Caldwell: Carl R. Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA.
  5. Samuel A Wickline: Department of Computation and Molecular Biophysics, School of Medicine, Washington University, St. Louis, MO 63110, USA.
  6. Gene E Robinson: Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA generobi@illinois.edu.

Abstract

Studies in evolutionary and developmental biology show that relationships between transcription factors (TFs) and their target genes can be altered to result in novel regulatory relationships that generate phenotypic plasticity. We hypothesized that context-dependent shifts in the nervous system associated with behavior may also be linked to changes in TF-target relationships over physiological time scales. We tested this hypothesis using honey bee () division of labor as a model system by performing bioinformatic analyses of previously published brain transcriptomic profiles together with new RNAi and behavioral experiments. The bioinformatic analyses identified five TFs that exhibited strong signatures of regulatory plasticity as a function of division of labor. RNAi targeting of one of these TFs () and a related TF that did not exhibit plasticity () was administered in conjunction with automated analyses of foraging behavior in the field, laboratory assays of aggression and brood care behavior, and endocrine treatments. The results showed that changes in the regulatory relationships of these TFs were associated with behavioral state, social context and endocrine state. These findings provide the first empirical evidence that TF-target relationships in the brain are altered in conjunction with behavior and social context. They also suggest that one mechanism for this plasticity involves pleiotropic TFs high up in regulatory hierarchies producing behavior-specific transcriptional responses by activating different downstream TFs to induce discrete context-dependent transcriptional cascades. These findings provide new insights into the dynamic nature of the transcriptional regulatory architecture underlying behavior in the brain.

Keywords

References

  1. Annu Rev Entomol. 1992;37:637-65 [PMID: 1539941]
  2. Science. 2003 Oct 10;302(5643):296-9 [PMID: 14551438]
  3. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17929-34 [PMID: 25453090]
  4. Sci Signal. 2016 Aug 23;9(442):ra83 [PMID: 27555660]
  5. J Neurosci. 2003 Jun 15;23(12):5370-80 [PMID: 12832563]
  6. Biomaterials. 2010 Apr;31(11):3079-86 [PMID: 20092889]
  7. Sci Signal. 2010 Nov 02;3(146):ra79 [PMID: 21045205]
  8. PLoS One. 2015 Nov 16;10(11):e0143183 [PMID: 26569402]
  9. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18020-5 [PMID: 21960440]
  10. Sci Rep. 2017 May 18;7(1):2132 [PMID: 28522854]
  11. Science. 2004 Dec 17;306(5704):2084-7 [PMID: 15528408]
  12. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12750-5 [PMID: 23852726]
  13. Mol Cell. 2014 Mar 6;53(5):819-30 [PMID: 24606920]
  14. J Exp Biol. 2015 Jan 1;218(Pt 1):140-9 [PMID: 25568461]
  15. Insect Mol Biol. 2019 Feb;28(1):145-159 [PMID: 30270498]
  16. Genome Res. 2012 Jul;22(7):1266-81 [PMID: 22472103]
  17. Development. 2007 Jan;134(2):223-32 [PMID: 17185323]
  18. Elife. 2016 Aug 11;5: [PMID: 27514026]
  19. Elife. 2018 May 01;7: [PMID: 29714687]
  20. Learn Mem. 2016 Apr 15;23(5):195-207 [PMID: 27084927]
  21. Cancer Metastasis Rev. 2014 Dec;33(4):869-77 [PMID: 25344801]
  22. Behav Res Methods. 2013 Sep;45(3):873-9 [PMID: 23299397]
  23. Science. 2015 Jun 5;348(6239):1139-43 [PMID: 25977371]
  24. Annu Rev Entomol. 2013;58:543-62 [PMID: 23020615]
  25. Sci Rep. 2015 Jun 15;5:11136 [PMID: 26073445]
  26. PLoS Genet. 2012;8(3):e1002596 [PMID: 22479195]
  27. BMC Bioinformatics. 2015 Sep 24;16:309 [PMID: 26403471]
  28. J Exp Zool B Mol Dev Evol. 2018 Sep;330(6-7):317-329 [PMID: 30387926]
  29. PLoS One. 2013;8(3):e58165 [PMID: 23483987]
  30. Nat Neurosci. 2016 Aug 26;19(9):1131-41 [PMID: 27571192]
  31. Nat Neurosci. 2012 Oct;15(10):1371-3 [PMID: 22983211]
  32. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1801-10 [PMID: 22691501]
  33. Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E654-61 [PMID: 26787876]
  34. J Exp Biol. 2011 Nov 15;214(Pt 22):3808-21 [PMID: 22031746]
  35. Annu Rev Genet. 2012;46:591-615 [PMID: 22994354]
  36. BMC Genomics. 2018 Mar 26;19(1):216 [PMID: 29580210]
  37. Biostatistics. 2012 Jul;13(3):539-52 [PMID: 22101192]
  38. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Nov;199(11):947-62 [PMID: 23681219]
  39. Science. 2002 Apr 26;296(5568):741-4 [PMID: 11976457]
  40. Nature. 2014 Aug 28;512(7515):400-5 [PMID: 25164749]
  41. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16068-75 [PMID: 17065327]
  42. Elife. 2016 May 05;5: [PMID: 27146892]
  43. Cell. 2015 May 7;161(4):714-23 [PMID: 25957680]
  44. Neuron. 2013 Oct 30;80(3):624-32 [PMID: 24183015]
  45. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15400-5 [PMID: 19706434]
  46. Learn Mem. 1998 May-Jun;5(1-2):115-23 [PMID: 10454376]
  47. Science. 2016 Jan 1;351(6268):aac6633 [PMID: 26722000]

Grants

  1. R01 GM117467/NIGMS NIH HHS

MeSH Term

Animals
Bees
Brain
Gene Expression Regulation
Social Behavior
Transcription Factors
Transcriptome

Chemicals

Transcription Factors

Word Cloud

Created with Highcharts 10.0.0regulatoryTFsplasticitybehaviorrelationshipsbraintranscriptionalassociatedlaboranalysesalteredcontext-dependentsystemalsochangesTF-targethoneydivisionbioinformaticnewRNAibehavioraloneconjunctionendocrinestatesocialcontextfindingsprovideSocialStudiesevolutionarydevelopmentalbiologyshowtranscriptionfactorstargetgenescanresultnovelgeneratephenotypichypothesizedshiftsnervousmaylinkedphysiologicaltimescalestestedhypothesisusingbeemodelperformingpreviouslypublishedtranscriptomicprofilestogetherexperimentsidentifiedfiveexhibitedstrongsignaturesfunctiontargetingrelatedTFexhibitadministeredautomatedforagingfieldlaboratoryassaysaggressionbroodcaretreatmentsresultsshowedfirstempiricalevidencesuggestmechanisminvolvespleiotropichighhierarchiesproducingbehavior-specificresponsesactivatingdifferentdownstreaminducediscretecascadesinsightsdynamicnaturearchitectureunderlyingDivisionbeesBehavioralendocrinologyGenenetworksinsectsTranscriptomic

Similar Articles

Cited By