Proteome Analysis Using Gel-LC-MS/MS.

Aaron R Goldman, Lynn A Beer, Hsin-Yao Tang, Peter Hembach, Delaine Zayas-Bazan, David W Speicher
Author Information
  1. Aaron R Goldman: Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania.
  2. Lynn A Beer: Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania.
  3. Hsin-Yao Tang: Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, Pennsylvania.
  4. Peter Hembach: Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania.
  5. Delaine Zayas-Bazan: Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania.
  6. David W Speicher: Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania.

Abstract

This article describes processing of protein samples using 1D SDS gels prior to protease digestion for proteomics workflows that subsequently utilize reversed-phase nanocapillary ultra-high-pressure liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS). The resulting LC-MS/MS data are used to identify peptides and thereby infer proteins present in samples ranging from simple mixtures to very complex proteomes. Bottom-up proteome studies usually involve quantitative comparisons across several or many samples. For either situation, 1D SDS gels represent a simple, widely available technique that can be used to either fractionate complex proteomes or rapidly clean up low microgram samples with minimal losses. After gel separation and staining/destaining, appropriate gel slices are excised, and in-gel reduction, alkylation, and protease digestion are performed. Digests are then processed for LC-MS/MS analysis. Protocols are described for either sample fractionation with high-throughput processing of many samples or simple cleanup without fractionation. An optional strategy is to conduct in-solution reduction and alkylation prior to running gels, which is advantageous when a large number of samples will be separated into large numbers of fractions. Optimization of trypsin digestion parameters and comparison to in-solution protease digestion are also described. �� 2019 by John Wiley & Sons, Inc.

Keywords

References

  1. Mol Cell Proteomics. 2002 Nov;1(11):845-67 [PMID: 12488461]
  2. Anal Biochem. 2011 Mar 15;410(2):307-9 [PMID: 21144814]
  3. Nat Rev Mol Cell Biol. 2004 Sep;5(9):699-711 [PMID: 15340378]
  4. Curr Protoc Protein Sci. 2019 Feb;95(1):e74 [PMID: 30238645]
  5. Methods Mol Biol. 2017;1550:11-18 [PMID: 28188519]
  6. Curr Protoc Protein Sci. 2008 Aug;Chapter 23:23.6.1-23.6.11 [PMID: 18729049]
  7. J Biomol Tech. 2000 Jun;11(2):74-86 [PMID: 19499040]
  8. Curr Protoc Protein Sci. 2016 Nov 1;86:16.4.1-16.4.20 [PMID: 27801520]
  9. Methods Mol Biol. 2017;1619:81-101 [PMID: 28674879]
  10. Cell Rep. 2013 Aug 15;4(3):609-20 [PMID: 23933261]
  11. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  12. Brief Funct Genomic Proteomic. 2004 Nov;3(3):220-39 [PMID: 15642186]
  13. Mol Cell Proteomics. 2016 Nov;15(11):3348-3360 [PMID: 27654507]
  14. J Proteome Res. 2011 Mar 4;10(3):1126-38 [PMID: 21142075]
  15. PLoS One. 2013;8(3):e60129 [PMID: 23544127]
  16. Autophagy. 2015;11(1):60-74 [PMID: 25484078]
  17. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  18. Mass Spectrom Rev. 2013 Nov-Dec;32(6):453-65 [PMID: 23775586]
  19. Curr Protoc Protein Sci. 2007 Nov;Chapter 24:Unit 24.4 [PMID: 18429323]
  20. J Biol Methods. 2016;3(3): [PMID: 27482532]
  21. Curr Protoc Protein Sci. 2018 Feb 21;91:10.5.1-10.5.20 [PMID: 29516479]
  22. Curr Protoc Protein Sci. 2001 May;Chapter 10:Unit 10.1 [PMID: 18429091]
  23. Anal Chem. 1996 Mar 1;68(5):850-8 [PMID: 8779443]
  24. Structure. 2017 Jan 3;25(1):132-145 [PMID: 27989623]
  25. Mol Cell Proteomics. 2002 May;1(5):376-86 [PMID: 12118079]
  26. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 [PMID: 24942700]
  27. Methods Mol Biol. 2011;728:3-27 [PMID: 21468938]
  28. Mol Cell Proteomics. 2012 Mar;11(3):M111.014050 [PMID: 22278370]
  29. Nat Methods. 2009 May;6(5):359-62 [PMID: 19377485]

Grants

  1. R01 HD076279/NICHD NIH HHS
  2. P01 CA140043/NCI NIH HHS
  3. P50 CA174523/NCI NIH HHS
  4. T32 GM008275/NIGMS NIH HHS
  5. P30 CA010815/NCI NIH HHS
  6. R50 CA221838/NCI NIH HHS
  7. R01 CA131582/NCI NIH HHS
  8. T32 CA009171/NCI NIH HHS

MeSH Term

Chemical Fractionation
Chromatography, High Pressure Liquid
Electrophoresis, Polyacrylamide Gel
High-Throughput Screening Assays
Peptides
Proteome
Tandem Mass Spectrometry

Chemicals

Peptides
Proteome

Word Cloud

Created with Highcharts 10.0.0samplesdigestiongelsSDSproteaseLC-MS/MSsimpleeitherfractionationprocessing1Dpriorproteomicsmassspectrometryusedcomplexproteomesproteomemanygelin-gelreductionalkylationdescribedin-solutionlargearticledescribesproteinusingworkflowssubsequentlyutilizereversed-phasenanocapillaryultra-high-pressureliquidchromatographyLCcoupledtandemMS/MSresultingdataidentifypeptidestherebyinferproteinspresentrangingmixturesBottom-upstudiesusuallyinvolvequantitativecomparisonsacrossseveralsituationrepresentwidelyavailabletechniquecanfractionaterapidlycleanlowmicrogramminimallossesseparationstaining/destainingappropriateslicesexcisedperformedDigestsprocessedanalysisProtocolssamplehigh-throughputcleanupwithoutoptionalstrategyconductrunningadvantageousnumberwillseparatednumbersfractionsOptimizationtrypsinparameterscomparisonalso��2019JohnWiley&SonsIncProteomeAnalysisUsingGel-LC-MS/MSgel-LC-MS/MS

Similar Articles

Cited By