Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress.

Zubi Liu, Hui Huang, Minbo Qi, Xuejun Wang, Omosalewa O Adebanjo, Zhenmei Lu
Author Information
  1. Zubi Liu: MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
  2. Hui Huang: MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
  3. Minbo Qi: MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
  4. Xuejun Wang: MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
  5. Omosalewa O Adebanjo: MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
  6. Zhenmei Lu: MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China lzhenmei@zju.edu.cn.

Abstract

Bacterial consortia are among the most basic units in the biodegradation of environmental pollutants. Pollutant-degrading strains frequently encounter different types of environmental stresses and must be able to survive with other bacteria present in the polluted environments. In this study, we proposed a noncontact interaction mode between a tetrahydrofuran (THF)-degrading strain, YYL, and a non-THF-degrading strain, MLY1. The metabolic interaction mechanism between strains YYL and MLY1 was explored through physiological and molecular studies and was further supported by the metabolic response profile of strain YYL, both monocultured and cocultured with strain MLY1 at the optimal pH (pH 8.3) and under pH stress (pH 7.0), through a liquid chromatography-mass spectrometry-based metabolomic analysis. The results suggested that the coculture system resists pH stress in three ways: (i) strain MLY1 utilized acid metabolites and impacted the proportion of glutamine, resulting in an elevated intracellular pH of the system; (ii) strain MLY1 had the ability to degrade intermediates, thus alleviating the product inhibition of strain YYL; and (iii) strain MLY1 produced some essential micronutrients for strain YYL to aid the growth of this strain under pH stress, while strain YYL produced THF degradation intermediates for strain MLY1 as major nutrients. In addition, a metabolite cross-feeding interaction with respect to pollutant biodegradation is discussed. species have been discovered in diverse environmental niches and can degrade numerous recalcitrant toxic pollutants. However, the pollutant degradation efficiency of these strains is severely reduced due to the complexity of environmental conditions and limitations in the growth of the pollutant-degrading microorganism. In our study, strain MLY1 exhibited strong stress resistance to adapt to various environments and improved the THF degradation efficiency of YYL by a metabolic cross-feeding interaction style to relieve the pH stress. These findings suggest that metabolite cross-feeding occurred in a complementary manner, allowing a pollutant-degrading strain to collaborate with a nondegrading strain in the biodegradation of various recalcitrant compounds. The study of metabolic exchanges is crucial to elucidate mechanisms by which degrading and symbiotic bacteria interact to survive environmental stress.

Keywords

References

  1. J Bacteriol. 1999 Jun;181(11):3525-35 [PMID: 10348866]
  2. FEMS Microbiol Lett. 2000 May 15;186(2):301-6 [PMID: 10802188]
  3. Eur J Biochem. 2001 Jul;268(13):3774-82 [PMID: 11432745]
  4. Arch Microbiol. 2003 Apr;179(4):266-77 [PMID: 12632259]
  5. Microbiol Mol Biol Rev. 2003 Sep;67(3):429-53, table of contents [PMID: 12966143]
  6. J Ind Microbiol Biotechnol. 2003 Dec;30(12):705-14 [PMID: 14666425]
  7. J Microbiol Methods. 2004 Dec;59(3):363-70 [PMID: 15488279]
  8. Res Microbiol. 2004 Nov;155(9):761-9 [PMID: 15501654]
  9. Biochim Biophys Acta. 2005 Dec 1;1753(2):164-73 [PMID: 16168724]
  10. Appl Environ Microbiol. 2007 Jan;73(1):278-88 [PMID: 17071787]
  11. Environ Sci Technol. 2006 Dec 1;40(23):7305-11 [PMID: 17180982]
  12. Bioresour Technol. 2009 Jun;100(11):2762-9 [PMID: 19230656]
  13. J Biol Chem. 1991 Nov 15;266(32):21515-22 [PMID: 1939182]
  14. Environ Technol. 2009 Mar;30(3):291-9 [PMID: 19438062]
  15. J Hazard Mater. 2010 Apr 15;176(1-3):262-8 [PMID: 19959291]
  16. Bioresour Technol. 2010 Aug;101(16):6461-7 [PMID: 20381342]
  17. ISME J. 2011 Jul;5(7):1133-42 [PMID: 21326336]
  18. Cell. 2011 Feb 18;144(4):590-600 [PMID: 21335240]
  19. J Hazard Mater. 2011 May 15;189(1-2):486-94 [PMID: 21414720]
  20. Mol Microbiol. 2011 Jul;81(2):297-301 [PMID: 21651624]
  21. Curr Biol. 2011 Aug 23;21(16):1366-72 [PMID: 21835622]
  22. Microb Cell Fact. 2011 Aug 30;10 Suppl 1:S8 [PMID: 21995488]
  23. Bioresour Technol. 2012 Mar;107:10-8 [PMID: 22257855]
  24. BMC Genomics. 2012 Jul 23;13:327 [PMID: 22823523]
  25. J Mol Microbiol Biotechnol. 2012;22(5):312-6 [PMID: 23147387]
  26. Cell Res. 2013 May;23(5):635-44 [PMID: 23337585]
  27. J Hazard Mater. 2013 Oct 15;261:550-8 [PMID: 23994653]
  28. Appl Environ Microbiol. 2014 May;80(9):2656-64 [PMID: 24532074]
  29. Food Microbiol. 2014 Sep;42:172-80 [PMID: 24929734]
  30. Nat Commun. 2015 Feb 23;6:6283 [PMID: 25704114]
  31. Curr Opin Microbiol. 2015 Oct;27:37-44 [PMID: 26207681]
  32. Mol Microbiol. 2016 Oct;102(2):260-273 [PMID: 27381174]
  33. Microbiology. 2016 Oct 21;:null [PMID: 27902405]
  34. Front Microbiol. 2017 Nov 21;8:2297 [PMID: 29209303]
  35. Environ Pollut. 2018 Aug;239:670-680 [PMID: 29709838]
  36. Ecotoxicol Environ Saf. 2018 Sep 15;159:20-27 [PMID: 29730405]
  37. Eur J Biochem. 1998 Feb 1;251(3):986-90 [PMID: 9490076]
  38. Mol Microbiol. 1998 Jul;29(2):397-407 [PMID: 9720860]

MeSH Term

Bacillus cereus
Biodegradation, Environmental
Environmental Pollutants
Furans
Hydrogen-Ion Concentration
Microbial Interactions
Rhodococcus
Stress, Physiological

Chemicals

Environmental Pollutants
Furans
tetrahydrofuran

Word Cloud

Created with Highcharts 10.0.0strainMLY1YYLpHstressenvironmentalinteractionmetabolicdegradationcross-feedingbiodegradationstrainsstudyTHFpollutantssurvivebacteriaenvironmentstetrahydrofuransystemdegradeintermediatesproducedgrowthmetabolitepollutantrecalcitrantefficiencypollutant-degradingvariousRhodococcusruberBacilluscereusBacterialconsortiaamongbasicunitsPollutant-degradingfrequentlyencounterdifferenttypesstressesmustablepresentpollutedproposednoncontactmode-degradingnon-THF-degradingmechanismexploredphysiologicalmolecularstudiessupportedresponseprofilemonoculturedcoculturedoptimal8370liquidchromatography-massspectrometry-basedmetabolomicanalysisresultssuggestedcocultureresiststhreeways:utilizedacidmetabolitesimpactedproportionglutamineresultingelevatedintracellulariiabilitythusalleviatingproductinhibitioniiiessentialmicronutrientsaidmajornutrientsadditionrespectdiscussedspeciesdiscovereddiversenichescannumeroustoxicHoweverseverelyreducedduecomplexityconditionslimitationsmicroorganismexhibitedstrongresistanceadaptimprovedstylerelievefindingssuggestoccurredcomplementarymannerallowingcollaboratenondegradingcompoundsexchangescrucialelucidatemechanismsdegradingsymbioticinteractMetaboliteCross-FeedingBiodegradationTetrahydrofuranStresscooperationlow-pH

Similar Articles

Cited By