Single-cell landscape in mammary epithelium reveals bipotent-like cells associated with breast cancer risk and outcome.

Weiyan Chen, Samuel J Morabito, Kai Kessenbrock, Tariq Enver, Kerstin B Meyer, Andrew E Teschendorff
Author Information
  1. Weiyan Chen: 1CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China.
  2. Samuel J Morabito: 2Chao Family Comprehensive Cancer Center, University of California, Irvine 839 Health Science Road, Sprague Hall 114 Irvine, Irvine, CA 92697-3905 USA. ORCID
  3. Kai Kessenbrock: 2Chao Family Comprehensive Cancer Center, University of California, Irvine 839 Health Science Road, Sprague Hall 114 Irvine, Irvine, CA 92697-3905 USA. ORCID
  4. Tariq Enver: 3UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT United Kingdom.
  5. Kerstin B Meyer: 4Wellcome Sanger Institute, Cambridge, CB10 1SA UK. ORCID
  6. Andrew E Teschendorff: 1CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China. ORCID

Abstract

Adult stem-cells may serve as the cell-of-origin for cancer, yet their unbiased identification in single cell RNA sequencing data is challenging due to the high dropout rate. In the case of breast, the existence of a bipotent stem-like state is also controversial. Here we apply a marker-free algorithm to scRNA-Seq data from the human mammary epithelium, revealing a high-potency cell-state enriched for an independent mammary stem-cell expression module. We validate this stem-like state in independent scRNA-Seq data. Our algorithm further predicts that the stem-like state is bipotent, a prediction we are able to validate using FACS sorted bulk expression data. The bipotent stem-like state correlates with clinical outcome in basal breast cancer and is characterized by overexpression of and , two modulators of basal breast cancer risk. This study illustrates the power of a marker-free computational framework to identify a novel bipotent stem-like state in the mammary epithelium.

Keywords

References

  1. Stem Cell Reports. 2018 May 8;10(5):1596-1609 [PMID: 29606612]
  2. Nat Commun. 2017 Dec 11;8(1):2128 [PMID: 29225342]
  3. Breast Cancer Res. 2012 Oct 22;14(5):R134 [PMID: 23088371]
  4. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8 [PMID: 12629218]
  5. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  6. Nature. 2014 May 15;509(7500):371-5 [PMID: 24739965]
  7. Nat Commun. 2018 May 23;9(1):2028 [PMID: 29795293]
  8. Nature. 2019 Feb;566(7745):496-502 [PMID: 30787437]
  9. Nature. 2012 Apr 18;486(7403):346-52 [PMID: 22522925]
  10. Stem Cells. 2014 Jun;32(6):1437-50 [PMID: 24648416]
  11. Nat Commun. 2018 Sep 11;9(1):3685 [PMID: 30206223]
  12. Bioinformatics. 2016 Apr 15;32(8):1241-3 [PMID: 26668002]
  13. Science. 2015 Jan 2;347(6217):78-81 [PMID: 25554788]
  14. Nat Commun. 2016 Jun 30;7:11988 [PMID: 27356503]
  15. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2467-E2476 [PMID: 29463712]
  16. Elife. 2017 Dec 05;6: [PMID: 29206104]
  17. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  18. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):E5643-50 [PMID: 25512504]
  19. PLoS Comput Biol. 2015 Mar 20;11(3):e1004115 [PMID: 25793737]
  20. Genome Biol. 2016 Oct 3;17(1):205 [PMID: 27716309]
  21. Nat Genet. 2016 Jan;48(1):12-21 [PMID: 26618344]
  22. Brief Bioinform. 2020 Jan 17;21(1):248-261 [PMID: 30289442]
  23. Blood. 2018 Aug 23;132(8):791-803 [PMID: 29991556]
  24. Nat Rev Genet. 2015 Mar;16(3):133-45 [PMID: 25628217]
  25. Genome Res. 2015 Oct;25(10):1491-8 [PMID: 26430159]
  26. Nature. 2018 Jan 24;553(7689):418-426 [PMID: 29364285]
  27. Biomedicines. 2018 May 04;6(2): [PMID: 29734696]
  28. Nature. 2006 Feb 23;439(7079):993-7 [PMID: 16395311]
  29. Nat Cell Biol. 2017 Apr;19(4):271-281 [PMID: 28319093]
  30. Nature. 2016 Nov 10;539(7628):309-313 [PMID: 27806376]
  31. Nat Med. 2009 Aug;15(8):907-13 [PMID: 19648928]
  32. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  33. Cell. 2016 Aug 25;166(5):1132-1146.e7 [PMID: 27565343]
  34. Genome Biol. 2017 May 8;18(1):84 [PMID: 28482897]
  35. Nucleic Acids Res. 2017 Apr 20;45(7):e54 [PMID: 27998929]
  36. Nature. 2016 Jun 08;534(7607):391-5 [PMID: 27281220]
  37. Nucleic Acids Res. 2011 Jan;39(Database issue):D685-90 [PMID: 21071392]
  38. Oncol Res. 2017 Nov 2;25(9):1453-1462 [PMID: 28276310]
  39. Nat Commun. 2017 Jun 01;8:15599 [PMID: 28569836]
  40. Science. 2015 Feb 13;347(6223):729-31 [PMID: 25678653]
  41. Cell. 2010 Jan 8;140(1):62-73 [PMID: 20074520]
  42. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  43. Mol Biol Cell. 2002 Jun;13(6):1977-2000 [PMID: 12058064]
  44. Nat Rev Genet. 2006 Jan;7(1):21-33 [PMID: 16369569]
  45. Am J Pathol. 2011 Jul;179(1):2-11 [PMID: 21640330]
  46. Cell Syst. 2019 Apr 24;8(4):281-291.e9 [PMID: 30954476]
  47. F1000Res. 2016 Aug 31;5:2122 [PMID: 27909575]
  48. Blood. 2018 May 24;131(21):e1-e11 [PMID: 29588278]
  49. Nat Methods. 2016 Oct;13(10):845-8 [PMID: 27571553]
  50. Science. 2017 Mar 24;355(6331):1330-1334 [PMID: 28336671]
  51. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  52. Brief Funct Genomics. 2018 Jul 1;17(4):283-294 [PMID: 29092000]
  53. Bioinformatics. 2001 Oct;17(10):977-87 [PMID: 11673243]
  54. Sci Rep. 2013 Oct 24;3:3039 [PMID: 24154593]
  55. Cancer Res. 2018 Jan 15;78(2):410-421 [PMID: 29180470]
  56. Nature. 2016 Jul 06;535(7611):289-293 [PMID: 27383781]
  57. Nat Commun. 2017 Dec 11;8(1):2045 [PMID: 29229905]
  58. Nat Commun. 2016 Oct 25;7:13053 [PMID: 27779190]
  59. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  60. J Mammary Gland Biol Neoplasia. 2005 Jan;10(1):49-59 [PMID: 15886886]
  61. Nature. 2017 Nov 16;551(7680):333-339 [PMID: 29144463]
  62. Stat Appl Genet Mol Biol. 2004;3:Article3 [PMID: 16646809]
  63. Cell Stem Cell. 2016 Aug 4;19(2):266-277 [PMID: 27345837]
  64. Methods. 2014 Jun 1;67(3):282-93 [PMID: 24675401]
  65. Nature. 2017 Oct 18;550(7677):451-453 [PMID: 29072289]

Grants

  1. MR/M009033/1/Medical Research Council
  2. MR/N000838/1/Medical Research Council
  3. R00 CA181490/NCI NIH HHS

MeSH Term

Algorithms
Breast
Breast Neoplasms
Diffusion
Epithelium
Female
Gene Expression Regulation, Neoplastic
Humans
Neoplastic Stem Cells
Reproducibility of Results
Risk Factors
Single-Cell Analysis
Treatment Outcome

Word Cloud

Similar Articles

Cited By