In view of the globalization and energy consumption, an economic and sustainable biorefinery model is essential to address the energy security and climate change. From this perspective, renewable biofuel production from microalgae along with a wide range of value-added co-products define its potential as a biorefinery feedstock. However, economic viability of microalgal biorefinery at its current state is not considered sustainable. Reduce, recycle, and reuse of waste derived from algal bioenergy conversion process will lead to an energy efficient and sustainable zero-waste microalgal biorefinery. This review focuses on three major aspects of zero-waste microalgal biorefinery approach; (1) recent advances on microalgal bioenergy conversion processes (chemical, biochemical and thermochemical); (2) mitigation and transformation of liquid and solid waste and (3) techno-economic analysis (TEA) and lifecycle assessment (LCA). In addition, the study also focuses on the challenges and future perspectives for an advanced microalgal biorefinery model.