A lineage-resolved molecular atlas of embryogenesis at single-cell resolution.

Jonathan S Packer, Qin Zhu, Chau Huynh, Priya Sivaramakrishnan, Elicia Preston, Hannah Dueck, Derek Stefanik, Kai Tan, Cole Trapnell, Junhyong Kim, Robert H Waterston, John I Murray
Author Information
  1. Jonathan S Packer: Department of Genome Sciences, University of Washington, Seattle, WA, USA. ORCID
  2. Qin Zhu: Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  3. Chau Huynh: Department of Genome Sciences, University of Washington, Seattle, WA, USA.
  4. Priya Sivaramakrishnan: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  5. Elicia Preston: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  6. Hannah Dueck: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  7. Derek Stefanik: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  8. Kai Tan: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  9. Cole Trapnell: Department of Genome Sciences, University of Washington, Seattle, WA, USA. ORCID
  10. Junhyong Kim: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. junhyong@sas.upenn.edu watersto@uw.edu jmurr@pennmedicine.upenn.edu. ORCID
  11. Robert H Waterston: Department of Genome Sciences, University of Washington, Seattle, WA, USA. junhyong@sas.upenn.edu watersto@uw.edu jmurr@pennmedicine.upenn.edu. ORCID
  12. John I Murray: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. junhyong@sas.upenn.edu watersto@uw.edu jmurr@pennmedicine.upenn.edu. ORCID

Abstract

is an animal with few cells but a wide diversity of cell types. In this study, we characterize the molecular basis for their specification by profiling the transcriptomes of 86,024 single embryonic cells. We identify 502 terminal and preterminal cell types, mapping most single-cell transcriptomes to their exact position in ' invariant lineage. Using these annotations, we find that (i) the correlation between a cell's lineage and its transcriptome increases from middle to late gastrulation, then falls substantially as cells in the nervous system and pharynx adopt their terminal fates; (ii) multilineage priming contributes to the differentiation of sister cells at dozens of lineage branches; and (iii) most distinct lineages that produce the same anatomical cell type converge to a homogenous transcriptomic state.

Associated Data

Dryad | 10.5061/dryad.7tg31p7

References

  1. Cell Rep. 2012 Sep 27;2(3):666-73 [PMID: 22939981]
  2. Dev Biol. 1983 Nov;100(1):64-119 [PMID: 6684600]
  3. Science. 2018 May 25;360(6391): [PMID: 29674432]
  4. Nature. 2001 Apr 5;410(6829):694-8 [PMID: 11287956]
  5. Genome Res. 2011 Feb;21(2):325-41 [PMID: 21177967]
  6. Nucleic Acids Res. 2018 Jan 4;46(D1):D869-D874 [PMID: 29069413]
  7. Development. 2014 Aug;141(15):3093-101 [PMID: 25053437]
  8. Mol Cell. 2014 Feb 6;53(3):380-92 [PMID: 24440504]
  9. Development. 2009 Aug;136(16):2735-46 [PMID: 19605496]
  10. Dev Biol. 1977 Mar;56(1):110-56 [PMID: 838129]
  11. Nat Cell Biol. 2019 Jun;21(6):674-686 [PMID: 31160712]
  12. Dev Biol. 2012 Jun 15;366(2):298-307 [PMID: 22537498]
  13. Genome Res. 2016 Oct;26(10):1441-1450 [PMID: 27531719]
  14. Science. 2018 May 25;360(6391): [PMID: 29674431]
  15. Bioinformatics. 2013 May 15;29(10):1275-82 [PMID: 23589650]
  16. Science. 2018 Jun 1;360(6392): [PMID: 29700225]
  17. Development. 1987 Jul;100(3):365-82 [PMID: 3308403]
  18. Dev Biol. 2010 Nov 1;347(1):154-66 [PMID: 20807527]
  19. Cell. 2018 Aug 9;174(4):999-1014.e22 [PMID: 30096314]
  20. Science. 2017 Oct 13;358(6360):194-199 [PMID: 28860209]
  21. Development. 2011 Jul;138(14):2915-24 [PMID: 21653614]
  22. Genes Dev. 1997 Mar 15;11(6):774-85 [PMID: 9087431]
  23. Nature. 2019 Feb;566(7745):490-495 [PMID: 30787436]
  24. Dev Cell. 2016 Aug 22;38(4):430-44 [PMID: 27554860]
  25. Cell. 2012 Aug 17;150(4):855-66 [PMID: 22901814]
  26. Dev Biol. 2013 Feb 1;374(1):12-23 [PMID: 23220655]
  27. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15479-84 [PMID: 20713707]
  28. Nat Methods. 2017 Mar;14(3):309-315 [PMID: 28114287]
  29. Development. 1999 Apr;126(7):1547-62 [PMID: 10068647]
  30. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  31. Genes Dev. 2000 Oct 1;14(19):2472-85 [PMID: 11018015]
  32. Genes Dev. 2010 Aug 15;24(16):1802-15 [PMID: 20713521]
  33. Cell. 1999 Nov 12;99(4):387-98 [PMID: 10571181]
  34. Wiley Interdiscip Rev Dev Biol. 2016 Jul;5(4):474-98 [PMID: 27136279]
  35. Gigascience. 2020 Dec 26;9(12): [PMID: 33367645]
  36. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  37. Dev Cell. 2018 Dec 17;47(6):801-813.e6 [PMID: 30416013]
  38. Genome Res. 2019 Jun;29(6):1036-1045 [PMID: 31123079]
  39. Cell. 2014 Sep 11;158(6):1431-1443 [PMID: 25215497]
  40. Science. 2017 Aug 18;357(6352):661-667 [PMID: 28818938]
  41. Science. 2018 Jun 1;360(6392):981-987 [PMID: 29700229]
  42. J Neurochem. 2007 Jul;102(1):246-60 [PMID: 17564681]
  43. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  44. Trends Genet. 2018 Sep;34(9):653-665 [PMID: 30007833]
  45. Nature. 2015 Mar 12;519(7542):219-22 [PMID: 25487147]
  46. Genome Res. 2012 Jul;22(7):1282-94 [PMID: 22508763]
  47. Dev Biol. 2002 Feb 15;242(2):96-108 [PMID: 11820809]
  48. Nature. 2019 Feb;566(7745):496-502 [PMID: 30787437]
  49. Cell. 2018 May 31;173(6):1520-1534.e20 [PMID: 29856957]
  50. Nature. 2014 Aug 28;512(7515):400-5 [PMID: 25164749]
  51. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3384-7 [PMID: 9096403]
  52. Nature. 2018 Oct;562(7727):367-372 [PMID: 30283141]
  53. Development. 1999 Apr;126(7):1537-46 [PMID: 10068646]
  54. Cell Stem Cell. 2018 Aug 02;23(2):166-179 [PMID: 29754780]
  55. Science. 2018 Jun 1;360(6392): [PMID: 29700227]
  56. Cell. 2006 Aug 25;126(4):755-66 [PMID: 16923394]
  57. Cell. 2011 Jun 10;145(6):875-89 [PMID: 21663792]

Grants

  1. R01 HL118342/NHLBI NIH HHS
  2. DP2 HD088158/NICHD NIH HHS
  3. U2C CA233285/NCI NIH HHS
  4. R35 GM127093/NIGMS NIH HHS
  5. R01 GM072675/NIGMS NIH HHS
  6. R21 HD085201/NICHD NIH HHS
  7. U41 HG007355/NHGRI NIH HHS
  8. RM1 HG010023/NHGRI NIH HHS

MeSH Term

Animals
Caenorhabditis elegans
Cell Differentiation
Cell Lineage
Embryonic Development
Gene Expression Regulation, Developmental
RNA-Seq
Single-Cell Analysis
Transcriptome