The single-cell transcriptomic landscape of early human diabetic nephropathy.

Parker C Wilson, Haojia Wu, Yuhei Kirita, Kohei Uchimura, Nicolas Ledru, Helmut G Rennke, Paul A Welling, Sushrut S Waikar, Benjamin D Humphreys
Author Information
  1. Parker C Wilson: Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110.
  2. Haojia Wu: Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110.
  3. Yuhei Kirita: Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110.
  4. Kohei Uchimura: Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110.
  5. Nicolas Ledru: Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110.
  6. Helmut G Rennke: Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115.
  7. Paul A Welling: Department of Physiology, University of Maryland Medical School, Baltimore, MD 21201.
  8. Sushrut S Waikar: Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA 02115.
  9. Benjamin D Humphreys: Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110; humphreysbd@wustl.edu. ORCID

Abstract

Diabetic nephropathy is characterized by damage to both the glomerulus and tubulointerstitium, but relatively little is known about accompanying cell-specific changes in gene expression. We performed unbiased single-nucleus RNA sequencing (snRNA-seq) on cryopreserved human diabetic kidney samples to generate 23,980 single-nucleus transcriptomes from 3 control and 3 early diabetic nephropathy samples. All major cell types of the kidney were represented in the final dataset. Side-by-side comparison demonstrated cell-type-specific changes in gene expression that are important for ion transport, angiogenesis, and immune cell activation. In particular, we show that the diabetic thick ascending limb, late distal convoluted tubule, and principal cells all adopt a gene expression signature consistent with increased potassium secretion, including alterations in Na/K-ATPase, , mineralocorticoid receptor, and expression, as well as decreased paracellular calcium and magnesium reabsorption. We also identify strong angiogenic signatures in glomerular cell types, proximal convoluted tubule, distal convoluted tubule, and principal cells. Taken together, these results suggest that increased potassium secretion and angiogenic signaling represent early kidney responses in human diabetic nephropathy.

Keywords

References

  1. J Biol Chem. 2005 Dec 2;280(48):39970-81 [PMID: 16216878]
  2. Nat Commun. 2015 Jul 22;6:7866 [PMID: 26198319]
  3. Diabetes. 2011 Sep;60(9):2354-69 [PMID: 21752957]
  4. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19619-19625 [PMID: 31506348]
  5. Am J Kidney Dis. 2004 Apr;43(4):636-50 [PMID: 15042541]
  6. Ann N Y Acad Sci. 2018 Jan;1411(1):21-35 [PMID: 28868790]
  7. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1615-20 [PMID: 16428287]
  8. J Clin Invest. 1997 Jan 15;99(2):342-8 [PMID: 9006003]
  9. J Biol Chem. 2007 Jun 8;282(23):17114-22 [PMID: 17442678]
  10. J Cell Biochem. 2012 Jan;113(1):293-301 [PMID: 21913214]
  11. Physiol Genomics. 2018 May 1;50(5):343-354 [PMID: 29521601]
  12. Nat Med. 2019 May;25(5):805-813 [PMID: 31011203]
  13. Diabetologia. 2018 May;61(5):996-1011 [PMID: 29520581]
  14. Am J Physiol Renal Physiol. 2002 Dec;283(6):F1403-21 [PMID: 12388415]
  15. Am J Physiol Renal Physiol. 2016 Feb 1;310(3):F230-6 [PMID: 26582761]
  16. Annu Rev Physiol. 2016;78:415-35 [PMID: 26654186]
  17. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8558-63 [PMID: 16709664]
  18. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2712-6 [PMID: 11226305]
  19. J Am Soc Nephrol. 2007 Apr;18(4):1084-92 [PMID: 17344426]
  20. Am J Med Sci. 2007 Jan;333(1):1-9 [PMID: 17220688]
  21. Hum Mol Genet. 2011 Mar 1;20(5):855-66 [PMID: 21131289]
  22. Physiol Genomics. 2019 Apr 1;51(4):125-135 [PMID: 30875275]
  23. J Biol Chem. 2005 May 13;280(19):19003-11 [PMID: 15755730]
  24. J Physiol. 2000 Aug 15;527 Pt 1:85-94 [PMID: 10944172]
  25. Nat Rev Nephrol. 2019 Feb;15(2):63-64 [PMID: 30568287]
  26. Nat Rev Nephrol. 2011 Jun;7(6):327-40 [PMID: 21537349]
  27. Metabolism. 2000 Jul;49(7):868-72 [PMID: 10909997]
  28. J Clin Invest. 2008 Feb;118(2):619-28 [PMID: 18188451]
  29. Kidney Int. 2015 Apr;87(4):812-9 [PMID: 25272234]
  30. Horm Metab Res. 1994 Jan;26(1):33-8 [PMID: 8150421]
  31. Am J Physiol Renal Physiol. 2001 Sep;281(3):F381-90 [PMID: 11502586]
  32. Diabetes. 2003 Dec;52(12):3005-9 [PMID: 14633864]
  33. Int J Biochem Cell Biol. 2012 Aug;44(8):1203-13 [PMID: 22565168]
  34. Am J Physiol Renal Physiol. 2017 Apr 1;312(4):F716-F731 [PMID: 27558558]
  35. Curr Diab Rep. 2016 May;16(5):45 [PMID: 27053072]
  36. Pflugers Arch. 2009 May;458(1):61-76 [PMID: 18982348]
  37. Diabetes. 2013 Jan;62(1):299-308 [PMID: 23139354]
  38. J Am Soc Nephrol. 2019 Jan;30(1):23-32 [PMID: 30510133]
  39. Fibrogenesis Tissue Repair. 2010 Aug 05;3:13 [PMID: 20687922]
  40. Mol Biol Cell. 2011 Aug 1;22(15):2766-76 [PMID: 21653826]
  41. Am J Physiol Renal Physiol. 2008 Dec;295(6):F1641-7 [PMID: 18784260]
  42. EMBO J. 1996 May 15;15(10):2371-80 [PMID: 8665844]

Grants

  1. R01 DK054231/NIDDK NIH HHS
  2. R01 DK110375/NIDDK NIH HHS
  3. T32 GM007200/NIGMS NIH HHS

MeSH Term

Aged
Calcium
Diabetes Mellitus
Diabetic Nephropathies
Female
Gene Expression Profiling
Humans
Kidney
Kidney Glomerulus
Kidney Tubules, Distal
Kidney Tubules, Proximal
Magnesium
Male
Middle Aged
Potassium
Sequence Analysis, RNA
Single-Cell Analysis
Transcriptome

Chemicals

Magnesium
Potassium
Calcium