The bracteatus pineapple genome and domestication of clonally propagated crops.

Li-Yu Chen, Robert VanBuren, Margot Paris, Hongye Zhou, Xingtan Zhang, Ching Man Wai, Hansong Yan, Shuai Chen, Michael Alonge, Srividya Ramakrishnan, Zhenyang Liao, Juan Liu, Jishan Lin, Jingjing Yue, Mahpara Fatima, Zhicong Lin, Jisen Zhang, Lixian Huang, Hao Wang, Teh-Yang Hwa, Shu-Min Kao, Jae Young Choi, Anupma Sharma, Jian Song, Lulu Wang, Won C Yim, John C Cushman, Robert E Paull, Tracie Matsumoto, Yuan Qin, Qingsong Wu, Jianping Wang, Qingyi Yu, Jun Wu, Shaoling Zhang, Peter Boches, Chih-Wei Tung, Ming-Li Wang, Geo Coppens d'Eeckenbrugge, Garth M Sanewski, Michael D Purugganan, Michael C Schatz, Jeffrey L Bennetzen, Christian Lexer, Ray Ming
Author Information
  1. Li-Yu Chen: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  2. Robert VanBuren: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  3. Margot Paris: Department of Biology, University of Fribourg, Fribourg, Switzerland.
  4. Hongye Zhou: Department of Genetics, University of Georgia, Athens, GA, USA. ORCID
  5. Xingtan Zhang: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  6. Ching Man Wai: Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ORCID
  7. Hansong Yan: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  8. Shuai Chen: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  9. Michael Alonge: Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
  10. Srividya Ramakrishnan: Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
  11. Zhenyang Liao: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  12. Juan Liu: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  13. Jishan Lin: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  14. Jingjing Yue: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  15. Mahpara Fatima: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  16. Zhicong Lin: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  17. Jisen Zhang: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  18. Lixian Huang: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  19. Hao Wang: Department of Genetics, University of Georgia, Athens, GA, USA.
  20. Teh-Yang Hwa: Department of Agronomy, National Taiwan University, Taipei, ROC.
  21. Shu-Min Kao: Department of Agronomy, National Taiwan University, Taipei, ROC.
  22. Jae Young Choi: Department of Biology, Center for Genomics and Systems Biology, New York University, NY, New York, USA. ORCID
  23. Anupma Sharma: Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX, USA.
  24. Jian Song: Department of Agronomy, University of Florida, Gainesville, FL, USA.
  25. Lulu Wang: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  26. Won C Yim: Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, USA. ORCID
  27. John C Cushman: Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, USA.
  28. Robert E Paull: Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
  29. Tracie Matsumoto: USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, USA.
  30. Yuan Qin: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.
  31. Qingsong Wu: South Subtropical Crops Research Institute, CATAS, Zhanjiang, China.
  32. Jianping Wang: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  33. Qingyi Yu: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. ORCID
  34. Jun Wu: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  35. Shaoling Zhang: Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
  36. Peter Boches: USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, USA.
  37. Chih-Wei Tung: Department of Agronomy, National Taiwan University, Taipei, ROC.
  38. Ming-Li Wang: Hawaii Agriculture Research Center, Kunia, HI, USA.
  39. Geo Coppens d'Eeckenbrugge: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Montpellier, France.
  40. Garth M Sanewski: Queensland Department of Agriculture and Fisheries, Nambour, Queensland, Australia.
  41. Michael D Purugganan: Department of Biology, Center for Genomics and Systems Biology, New York University, NY, New York, USA. ORCID
  42. Michael C Schatz: Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
  43. Jeffrey L Bennetzen: Department of Genetics, University of Georgia, Athens, GA, USA. maize@uga.edu.
  44. Christian Lexer: Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria. christian.lexer@univie.ac.at. ORCID
  45. Ray Ming: FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. rayming@illinois.edu. ORCID

Abstract

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.

References

  1. Zohary, D. Unconscious selection and the evolution of domesticated plants. Econ. Bot. 58, 5–10 (2004). [DOI: 10.1663/0013-0001(2004)058[0005]
  2. Bertoni, M. S. Contributions à l'étude Botanique des Plantes Cultivées (Ex Sylvis. Puerto Bertoni, Alto Parana. PY, 1919).
  3. Byers, D. S. Prehistory of the Tehuacan Valley (Univ. of Texas Press, 1967).
  4. Coppens d’Eeckenbrugge, G. & Duval, M.-F. The domestication of pineapple: context and hypotheses. Pineapple News 16, 15–27 (2009).
  5. Coppens d’Eeckenbrugge, G., Uriza Avila, D. E., Rebolledo Martínez, A. & Rebolledo Martínez, L. The Cascajal Block: another testimony of the antiquity of pineapple in Mexico? Pineapple News, 18, 47–48 (2011).
  6. Baker, K. F. & Collins, J. L. Notes on the distribution and ecology of Ananas and Pseudananas. Am. J. Bot. 26, 697–702 (1939). [DOI: 10.1002/j.1537-2197.1939.tb09339.x]
  7. Duval, M. F., Coppens d’Eeckenbrugge, G., Ferreira, F. R., Bianchetti, L. D. B. & Cabral, J. R. S. First results from joint EMBRAPA-CIRAD Ananas germplasm collecting in Brazil and French Guyana. Acta Hortic. 425, 137–144 (1997). [DOI: 10.17660/ActaHortic.1997.425.14]
  8. Asim, M. et al. A review on pineapple leaves fibre and its composites. Int. J. Polym. Sci. 2015, 950567 (2015).
  9. Beltrame, K. K. et al. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotox. Environ. Safe. 147, 64–71 (2018). [DOI: 10.1016/j.ecoenv.2017.08.034]
  10. Abd Razak, S. I., Sharif, N. F. A., Nayan, N. H. M., Muhamad, I. I. & Yahya, M. Y. Impregnation of poly(lactic acid) on biologically pulped pineapple leaf fiber for packaging materials. Bioresources 10, 4350–4359 (2015). [DOI: 10.15376/biores.10.3.4350-4359]
  11. Costa, L. M. M. et al. Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Ind. Crop. Prod. 41, 198–202 (2013). [DOI: 10.1016/j.indcrop.2012.04.025]
  12. Hazarika, P. et al. Development of apparels from silk waste and pineapple leaf fiber. J. Nat. Fibers 15, 416–424 (2018). [DOI: 10.1080/15440478.2017.1333071]
  13. Benzing, D. H. Bromeliaceae: Profile of an Adaptive Radiation. (Cambridge Univ. Press, 2000).
  14. Givnish, T. J. et al. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78 (2014). [DOI: 10.1016/j.ympev.2013.10.010]
  15. Barbará, T., Martinelli, G., Fay, M., Mayo, S. & Lexer, C. Population differentiation and species cohesion in two closely related plants adapted to neotropical high‐altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Mol. Ecol. 16, 1981–1992 (2007). [DOI: 10.1111/j.1365-294X.2007.03272.x]
  16. Wendt, T., Canela, M. B. F., de Faria, A. P. G. & Rios, R. I. Reproductive biology and natural hybridization between two endemic species of Pitcairnia (Bromeliaceae). Am. J. Bot. 88, 1760–1767 (2001). [DOI: 10.2307/3558350]
  17. Palma-Silva, C. et al. Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol. Ecol. 20, 3185–3201 (2011). [DOI: 10.1111/j.1365-294X.2011.05143.x]
  18. Bennetzen, J. L. & Wang, H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65, 505–530 (2014). [DOI: 10.1146/annurev-arplant-050213-035811]
  19. Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015). [DOI: 10.1038/ng.3435]
  20. Hamberger, B. et al. Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Can. J. Bot. 85, 1182–1201 (2007). [DOI: 10.1139/B07-098]
  21. Ehlting, J. et al. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J. 42, 618–640 (2005). [DOI: 10.1111/j.1365-313X.2005.02403.x]
  22. Adisak, J. & Jintana, J. in VII International Pineapple Symposium Vol. 902 (eds Abdullah, H. et al.) 423–426 (International Society for Horticultural Science, 2011).
  23. Jiang, S. Y. et al. Sucrose metabolism gene families and their biological functions. Sci. Rep. 5, 17583 (2015). [DOI: 10.1038/srep17583]
  24. Ruan, Y. L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Ann. Rev. Plant Biol. 65, 33–67 (2014). [DOI: 10.1146/annurev-arplant-050213-040251]
  25. Büttner, M. The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Letters 581, 2318–2324 (2007). [DOI: 10.1016/j.febslet.2007.03.016]
  26. Doidy, J. et al. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 17, 413–422 (2012). [DOI: 10.1016/j.tplants.2012.03.009]
  27. Coppens d’Eeckenbrugge, G., Sanewski, G. M., Smith, M. K., Duval, M.-F. & Leal, F. in Wild Crop Relatives: Genomic and Breeding Resources (ed. Kole C.) 21–41 (Springer, 2011).
  28. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006). [DOI: 10.1093/bioinformatics/btl446]
  29. Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998). [DOI: 10.1093/bioinformatics/14.1.68]
  30. Coppens d’Eeckenbrugge, G., Duval, M.-F., Leal, F. in Genetics and Genomics of Pineapple (ed. Ming, R.) 1–25 (Springer, 2018).
  31. Chapman, M. A., Hiscock, S. J. & Filatov, D. A. Genomic divergence during speciation driven by adaptation to altitude. Mol. Biol. Evol. 30, 2553–2567 (2013). [DOI: 10.1093/molbev/mst168]
  32. Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014). [DOI: 10.1111/mec.12796]
  33. Eckert, C. G. in Ecology and Evolutionary Biology of Clonal Plants (eds Stuefer, J.F. et al.) 279–298 (Springer, 2002).
  34. Chen, J., Hu, Q., Zhang, Y., Lu, C. & Kuang, H. P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res. 42, D1176–D1181 (2014). [DOI: 10.1093/nar/gkt1000]
  35. Wessler, S. R., Bureau, T. E. & White, S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5, 814–821 (1995). [DOI: 10.1016/0959-437X(95)80016-X]
  36. Stern, C. Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21, 625 (1936). [PMID: 17246815]
  37. LaFave, M. C. & Sekelsky, J. Mitotic recombination: why? when? how? where? PLoS Genet. 5, e1000411 (2009). [DOI: 10.1371/journal.pgen.1000411]
  38. Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220–1226 (2014). [DOI: 10.1038/ng.3117]
  39. Zhou, Z. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology 33, 408–414 (2015). [DOI: 10.1038/nbt.3096]
  40. Ramu, P. et al. Cassava HapMap: Managing genetic load in a clonal crop species. Preprint at bioRxiv https://doi.org/10.1101/077123 (2016).
  41. Neuteboom, L. W., Matsumoto, K. O. & Christopher, D. A. An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening. Plant Physiol. 151, 515–527 (2009). [DOI: 10.1104/pp.109.142232]
  42. Raimbault, A. K., Zuily-Fodil, Y., Soler, A., Mora, P. & de Carvalho, M. H. C. The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress. J. Plant Physiol. 170, 1442–1446 (2013). [DOI: 10.1016/j.jplph.2013.05.008]
  43. Coppens d’Eeckenbrugge, G., Duval, M.-F. & Van Miegroet, F. Fertility and self-incompatibility in the genus Ananas. Acta Hortic. 334, 45–52 (1992).
  44. Brewbaker, J. L. & Gorrez, D. D. Genetics of self-incompatibility in the monocot genera, Ananas (pineapple) and Gasteria. Am. J. Bot. 54, 611–616 (1967). [DOI: 10.1002/j.1537-2197.1967.tb10684.x]
  45. Bedinger, P. A., Broz, A. K., Tovar-Mendez, A. & McClure, B. Pollen-pistil interactions and their role in mate selection. Plant Physiol. 173, 79–90 (2017). [DOI: 10.1104/pp.16.01286]
  46. Gaut, B. S., Seymour, D. K., Liu, Q. P. & Zhou, Y. F. Demography and its effects on genomic variation in crop domestication. Nat. Plants 4, 512–520 (2018). [DOI: 10.1038/s41477-018-0210-1]
  47. Coppens d’Eeckenbrugge, G., Leal, F. & Bartholomew, D. in The Pineapple: Botany, Production and Uses 13–32 (2003).
  48. Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J. & van der Knaap, E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319, 1527–1530 (2008). [DOI: 10.1126/science.1153040]
  49. VanBuren, R. et al. The genome of black raspberry (Rubus occidentalis). Plant J. 87, 535–547 (2016). [DOI: 10.1111/tpj.13215]
  50. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999). [PMID: 10357855]
  51. Petes T. D. & Symington L. S. in The Molecular and Cellular Biology of the Yeast Saccharomyces (eds Jones, E.W. et al.) 407–521 (Cold Spring Harbor Press, 1991).
  52. Xie, T. et al. De novo plant genome assembly based on chromatin interactions: a case study of Arabidopsis thaliana. Mol. Plant 8, 489–492 (2015). [DOI: 10.1016/j.molp.2014.12.015]
  53. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017). [DOI: 10.1126/science.aal3327]
  54. Zhang, J. et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50, 1565–1573 (2018). [DOI: 10.1038/s41588-018-0237-2]
  55. Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome Annotation and Curation Using MAKER and MAKER-P. Curr. Protoc. Bioinformatics 48, 11–39 (2014). [PMID: 25501943]
  56. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0 http://www.repeatmasker.org/ (2013–2015).
  57. Guo, N. et al. Anthocyanin biosynthetic genes in Brassica rapa. BMC Genomics 15, 426 (2014).
  58. Lefort, V., Longueville, J.-E. & Gascuel, O. SMS: Smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017). [DOI: 10.1093/molbev/msx149]
  59. Hazzouri, K. M. et al. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat. Commun. 6, 8824 (2015). [DOI: 10.1038/ncomms9824]
  60. Qi, J. et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 45, 1510–1515 (2013). [DOI: 10.1038/ng.2801]
  61. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). [DOI: 10.1038/nmeth.1923]
  62. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011). [DOI: 10.1038/ng.806]
  63. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strainw1118; iso-2; iso-3. Fly (Austin). 6, 80–92 (2012). [DOI: 10.4161/fly.19695]
  64. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005). [DOI: 10.1371/journal.pbio.0030170]
  65. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). [PMID: 17701901]
  66. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012). [DOI: 10.1038/nprot.2012.016]
  67. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). [DOI: 10.1093/bioinformatics/btr330]
  68. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006). [DOI: 10.1093/molbev/msj030]
  69. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009). [DOI: 10.1101/gr.094052.109]
  70. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012). [DOI: 10.1371/journal.pgen.1002967]
  71. Price, A. L. et al. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet. 5, e1000519 (2009). [DOI: 10.1371/journal.pgen.1000519]
  72. Wegmann, D. et al. Recombination rates in admixed individuals identified by ancestry-based inference. Nat. Genet. 43, 847–853 (2011). [DOI: 10.1038/ng.894]
  73. Chen, H., Patterson, N. & Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010). [DOI: 10.1101/gr.100545.109]
  74. Han, Y. & Wessler, S. R. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199 (2010). [DOI: 10.1093/nar/gkq862]
  75. Han, Y., Qin, S. & Wessler, S. R. Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes. BMC Genomics 14, 71 (2013). [DOI: 10.1186/1471-2164-14-71]

MeSH Term

Ananas
Bromelains
Crops, Agricultural
Domestication
Gene Expression Regulation, Plant
Genome, Plant
Phenotype
Plant Proteins
Plants, Genetically Modified
Population Dynamics
Quantitative Trait, Heritable
Sugars

Chemicals

Plant Proteins
Sugars
Bromelains