The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development.

Daoquan Xiang, Teagen D Quilichini, Ziying Liu, Peng Gao, Youlian Pan, Qiang Li, Kirby T Nilsen, Prakash Venglat, Eddi Esteban, Asher Pasha, Yejun Wang, Rui Wen, Zhongjuan Zhang, Zhaodong Hao, Edwin Wang, Yangdou Wei, Richard Cuthbert, Leon V Kochian, Andrew Sharpe, Nicholas Provart, Dolf Weijers, C Stewart Gillmor, Curtis Pozniak, Raju Datla
Author Information
  1. Daoquan Xiang: Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada daoquan.xiang@nrc-cnrc.gc.ca raju.datla@nrc-cnrc.gc.ca. ORCID
  2. Teagen D Quilichini: Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada. ORCID
  3. Ziying Liu: Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada. ORCID
  4. Peng Gao: Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada. ORCID
  5. Youlian Pan: Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada. ORCID
  6. Qiang Li: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China. ORCID
  7. Kirby T Nilsen: Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada. ORCID
  8. Prakash Venglat: Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada. ORCID
  9. Eddi Esteban: Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada. ORCID
  10. Asher Pasha: Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada. ORCID
  11. Yejun Wang: Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China. ORCID
  12. Rui Wen: Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada. ORCID
  13. Zhongjuan Zhang: Laboratory of Biochemistry, Wageningen University, 6703HA Wageningen, The Netherlands. ORCID
  14. Zhaodong Hao: Laboratory of Biochemistry, Wageningen University, 6703HA Wageningen, The Netherlands. ORCID
  15. Edwin Wang: Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada. ORCID
  16. Yangdou Wei: College of Art and Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A5, Canada. ORCID
  17. Richard Cuthbert: Agriculture and Agri-Food Canada, Swift Current, Saskatchewan S9H 3X2, Canada. ORCID
  18. Leon V Kochian: Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada. ORCID
  19. Andrew Sharpe: Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada. ORCID
  20. Nicholas Provart: Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada. ORCID
  21. Dolf Weijers: Laboratory of Biochemistry, Wageningen University, 6703HA Wageningen, The Netherlands. ORCID
  22. C Stewart Gillmor: Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato 36824, México. ORCID
  23. Curtis Pozniak: Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada. ORCID
  24. Raju Datla: Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada daoquan.xiang@nrc-cnrc.gc.ca raju.datla@nrc-cnrc.gc.ca. ORCID

Abstract

Modern wheat production comes from two polyploid species, and (var ), which putatively arose from diploid ancestors , , and How gene expression during embryogenesis and grain development in wheats has been shaped by the differing contributions of diploid genomes through hybridization, polyploidization, and breeding selection is not well understood. This study describes the global landscape of gene activities during wheat embryogenesis and grain development. Using comprehensive transcriptomic analyses of two wheat cultivars and three diploid grasses, we investigated gene expression at seven stages of embryo development, two endosperm stages, and one pericarp stage. We identified transcriptional signatures and developmental similarities and differences among the five species, revealing the evolutionary divergence of gene expression programs and the contributions of A, B, and D subgenomes to grain development in polyploid wheats. The characterization of embryonic transcriptional programming in hexaploid wheat, tetraploid wheat, and diploid grass species provides insight into the landscape of gene expression in modern wheat and its ancestral species. This study presents a framework for understanding the evolution of domesticated wheat and the selective pressures placed on grain production, with important implications for future performance and yield improvements.plantcell;31/12/2888/FX1F1fx1.

References

  1. J Exp Bot. 2009;60(6):1537-53 [PMID: 19386614]
  2. J Exp Bot. 2012 Feb;63(3):1271-83 [PMID: 22090435]
  3. Dev Suppl. 1994;:135-42 [PMID: 7579514]
  4. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  5. Mol Biol Evol. 2016 May;33(5):1158-63 [PMID: 26912813]
  6. BMC Genomics. 2018 Aug 29;19(1):642 [PMID: 30157778]
  7. Plant Cell. 2013 Dec;25(12):4772 [PMID: 24368783]
  8. Plant Physiol. 2011 May;156(1):346-56 [PMID: 21402797]
  9. Plant Cell. 2019 May;31(5):974-992 [PMID: 30914497]
  10. Curr Biol. 2019 Jul 22;29(14):R705-R714 [PMID: 31336092]
  11. Science. 2002 Feb 22;295(5559):1482-5 [PMID: 11859185]
  12. Nature. 2010 Dec 9;468(7325):815-8 [PMID: 21150997]
  13. Trends Plant Sci. 2016 Jul;21(7):609-621 [PMID: 27021699]
  14. BMC Plant Biol. 2011 Apr 29;11:74 [PMID: 21529361]
  15. Plant J. 2011 May;66(4):553-63 [PMID: 21299659]
  16. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7582-7 [PMID: 24821765]
  17. Mol Biol Evol. 2015 Jun;32(6):1556-66 [PMID: 25725429]
  18. Cell. 2007 Nov 2;131(3):452-62 [PMID: 17981114]
  19. New Phytol. 2011 Oct;192(1):13-28 [PMID: 21793830]
  20. Curr Opin Genet Dev. 2017 Aug;45:69-75 [PMID: 28347942]
  21. Trends Genet. 2003 Jan;19(1):5-9 [PMID: 12493241]
  22. J Integr Plant Biol. 2019 May;61(5):639-650 [PMID: 30941858]
  23. Nat Protoc. 2007;2(11):2782-95 [PMID: 18007614]
  24. Trends Genet. 2018 Jul;34(7):532-544 [PMID: 29680748]
  25. Nature. 2018 May;557(7705):424-428 [PMID: 29743678]
  26. Environ Biosafety Res. 2007 Oct-Dec;6(4):249-57 [PMID: 18289500]
  27. Plant J. 2004 Mar;37(6):914-39 [PMID: 14996223]
  28. Plant Cell. 2018 Jan;30(1):37-47 [PMID: 29298834]
  29. BMC Genomics. 2017 Oct 11;18(1):766 [PMID: 29020946]
  30. Nat Rev Genet. 2002 Jun;3(6):429-41 [PMID: 12042770]
  31. Plant Cell. 2010 Apr;22(4):1046-56 [PMID: 20363770]
  32. Plant Methods. 2014 Sep 18;10:29 [PMID: 25250056]
  33. Curr Opin Plant Biol. 2010 Apr;13(2):139-45 [PMID: 20064738]
  34. Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):E913-E921 [PMID: 28096351]
  35. Plant Cell. 2011 Dec;23(12):4348-67 [PMID: 22158464]
  36. Plant Cell. 2004;16 Suppl:S214-27 [PMID: 15010513]
  37. Cell. 2013 Nov 21;155(5):990-6 [PMID: 24267885]
  38. Science. 2017 Jul 7;357(6346):93-97 [PMID: 28684525]
  39. Science. 2018 Aug 17;361(6403): [PMID: 30115783]
  40. Plant Cell Physiol. 2011 May;52(5):750-64 [PMID: 21317146]
  41. Plant Physiol. 2014 Sep;166(1):252-64 [PMID: 25037214]
  42. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  43. Genome Biol. 2018 Feb 28;19(1):26 [PMID: 29490679]
  44. Nature. 2017 Nov 23;551(7681):498-502 [PMID: 29143815]
  45. Mol Biol Evol. 2015 May;32(5):1221-31 [PMID: 25631928]
  46. Science. 2007 Jun 29;316(5833):1862-6 [PMID: 17600208]
  47. J Exp Bot. 2012 Jan;63(2):739-55 [PMID: 22016425]
  48. Plant J. 2010 Mar;61(5):752-66 [PMID: 20003165]
  49. Nature. 2012 Oct 4;490(7418):98-101 [PMID: 22951968]
  50. Science. 2014 Jul 18;345(6194):1250091 [PMID: 25035498]
  51. New Phytol. 2017 Feb;213(3):1477-1486 [PMID: 27551821]
  52. Science. 2018 Aug 17;361(6403): [PMID: 30115782]

MeSH Term

Cluster Analysis
Diploidy
Edible Grain
Endosperm
Evolution, Molecular
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genome, Plant
Polyploidy
Seeds
Signal Transduction
Transcription Factors
Transcriptome
Triticum

Chemicals

Transcription Factors