Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration.

Madhvi Menon, Shahin Mohammadi, Jose Davila-Velderrain, Brittany A Goods, Tanina D Cadwell, Yu Xing, Anat Stemmer-Rachamimov, Alex K Shalek, John Christopher Love, Manolis Kellis, Brian P Hafler
Author Information
  1. Madhvi Menon: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  2. Shahin Mohammadi: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  3. Jose Davila-Velderrain: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  4. Brittany A Goods: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  5. Tanina D Cadwell: Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, 02115, USA.
  6. Yu Xing: Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, 02115, USA.
  7. Anat Stemmer-Rachamimov: Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA.
  8. Alex K Shalek: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  9. John Christopher Love: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. ORCID
  10. Manolis Kellis: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. ORCID
  11. Brian P Hafler: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. brian.hafler@yale.edu.

Abstract

Genome-wide association studies (GWAS) have identified genetic variants associated with age-related macular degeneration (AMD), one of the leading causes of blindness in the elderly. However, it has been challenging to identify the cell types associated with AMD given the genetic complexity of the disease. Here we perform massively parallel single-cell RNA sequencing (scRNA-seq) of human retinas using two independent platforms, and report the first single-cell transcriptomic atlas of the human retina. Using a multi-resolution network-based analysis, we identify all major retinal cell types, and their corresponding gene expression signatures. Heterogeneity is observed within macroglia, suggesting that human retinal glia are more diverse than previously thought. Finally, GWAS-based enrichment analysis identifies glia, vascular cells, and cone photoreceptors to be associated with the risk of AMD. These data provide a detailed analysis of the human retina, and show how scRNA-seq can provide insight into cell types involved in complex, inflammatory genetic diseases.

References

  1. Neuron. 2012 Oct 18;76(2):266-80 [PMID: 23083731]
  2. Front Cell Neurosci. 2017 Feb 27;11:20 [PMID: 28289375]
  3. Nat Genet. 2018 Jun;50(6):825-833 [PMID: 29785013]
  4. Prog Retin Eye Res. 2006 Jul;25(4):397-424 [PMID: 16839797]
  5. Elife. 2019 Apr 30;8: [PMID: 31036157]
  6. Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1621-7 [PMID: 19850830]
  7. J Biol Chem. 2002 Apr 19;277(16):13394-400 [PMID: 11821400]
  8. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  9. Science. 2018 Dec 14;362(6420): [PMID: 30545854]
  10. Metallomics. 2014 Jul;6(7):1223-8 [PMID: 24740686]
  11. Nat Genet. 2019 Mar;51(3):404-413 [PMID: 30617256]
  12. Nat Biotechnol. 2016 Mar;34(3):296-8 [PMID: 26963554]
  13. PLoS Comput Biol. 2015 Apr 17;11(4):e1004219 [PMID: 25885710]
  14. Diabetes. 2017 Nov;66(11):2888-2902 [PMID: 28566273]
  15. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  16. Adv Biol Regul. 2016 Sep;62:37-49 [PMID: 27220739]
  17. J Neurosci. 2014 Mar 5;34(10):3793-806 [PMID: 24599476]
  18. J Comp Neurol. 2001 Sep 10;438(1):32-49 [PMID: 11503151]
  19. Nat Genet. 2016 Feb;48(2):134-43 [PMID: 26691988]
  20. Cell Tissue Res. 1998 Jan;291(1):19-31 [PMID: 9394040]
  21. Dev Dyn. 2010 Jun;239(6):1858-66 [PMID: 20503381]
  22. Cell. 2019 Feb 21;176(5):1222-1237.e22 [PMID: 30712875]
  23. Nature. 2018 Aug;560(7719):484-488 [PMID: 30111842]
  24. Neuron. 2016 Jan 6;89(1):37-53 [PMID: 26687838]
  25. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  26. Cell. 2016 Aug 25;166(5):1308-1323.e30 [PMID: 27565351]
  27. Nat Commun. 2018 Jul 17;9(1):2759 [PMID: 30018341]
  28. Glia. 2009 Nov 1;57(14):1538-52 [PMID: 19306360]
  29. J Comp Neurol. 1993 Jul 1;333(1):134-47 [PMID: 8340493]
  30. Nat Rev Neurosci. 2014 Jul;15(7):431-42 [PMID: 24894585]
  31. Acta Histochem. 2017 Mar;119(2):142-149 [PMID: 28110937]
  32. J Anat. 2007 Jan;210(1):54-65 [PMID: 17229283]
  33. Invest Ophthalmol Vis Sci. 2017 Aug 1;58(10):4223-4234 [PMID: 28846772]
  34. Nat Commun. 2018 Apr 17;9(1):1516 [PMID: 29666373]
  35. Nat Genet. 2018 Apr;50(4):621-629 [PMID: 29632380]
  36. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  37. Mol Syst Biol. 2019 Jun 19;15(6):e8746 [PMID: 31217225]
  38. Nat Genet. 2020 May;52(5):482-493 [PMID: 32341526]
  39. Nat Methods. 2017 Apr;14(4):395-398 [PMID: 28192419]
  40. Arch Ophthalmol. 2003 Aug;121(8):1099-105 [PMID: 12912686]
  41. J Biol Chem. 2009 Jul 24;284(30):19927-36 [PMID: 19478078]

Grants

  1. K08 EY026652/NEI NIH HHS
  2. U01 NS110453/NINDS NIH HHS
  3. R01 AG062335/NIA NIH HHS
  4. U01 MH119509/NIMH NIH HHS
  5. F32 AI136459/NIAID NIH HHS

MeSH Term

Amacrine Cells
Astrocytes
Blood Vessels
Ependymoglial Cells
Gene Expression
Gene Expression Profiling
Genetic Predisposition to Disease
High-Throughput Nucleotide Sequencing
Humans
Macular Degeneration
Microglia
Neuroglia
Retina
Retinal Bipolar Cells
Retinal Cone Photoreceptor Cells
Retinal Ganglion Cells
Retinal Horizontal Cells
Retinal Neurons
Retinal Rod Photoreceptor Cells
Retinal Vessels
Sequence Analysis, RNA
Single-Cell Analysis