Bayesian Nonparametrics and Biostatistics: The Case of PET Imaging.

Mame Diarra Fall
Author Information
  1. Mame Diarra Fall: Laboratoire de mathematiques analyse probabilites modelisation d'Orleans, Orleans45067, France.

Abstract

Biostatistic applications often require to collect and analyze a massive amount of data. Hence, it has become necessary to consider new statistical paradigms that perform well in characterizing complex data. Nonparametric Bayesian methods provide a widely used framework that offers the key advantages of a fully model-based probabilistic framework, while being highly flexible and adaptable. The goal of this paper is to provide a motivation of Bayesian nonparametrics (BNP) through a particular biomedical application, namely Positron Emission Tomography (PET) imaging reconstruction.

Keywords

References

  1. Dunson DB. Nonparametric Bayes applications to biostatistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press, 2010.
  2. Müller P, Mitra R. Bayesian nonparametric inference–why and how. Bayesian Anal. 2013;8:269–302.
  3. Robert CP. The Bayesian choice. From decision-theoretic foundations to computational implementation (Springer texts in statistics). New York: Springer-Verlag, 2001.
  4. Hjort NL, Holmes C, Müller P, Walker SG. Bayesian nonparametrics (Cambridge series in statistical and probabilistic mathematics). Cambridge: Cambridge University Press, 2010.
  5. Valk P, Bailey D. Positron Emission Tomography: basic science and clinical practice. New York: Springer–Verlag, 2003.
  6. Ollinger J, Fessler J. Positron-emission tomography. Signal Process Magazine, IEEE, 1997;14:43–55.
  7. Natterer F. The mathematics of computerized tomography. Society for Industrial and Applied Mathematics, 1986.
  8. Shepp L, Vardi Y. Maximum likelihood reconstruction in positron emission tomography. IEEE Trans Med Imag. 1982;1:113–22.
  9. Lange K, Carson R. EM reconstruction algorithm for emission and transmission tomography. J Comp Assist Tomo. 1984;8:306–16.
  10. Fall MD, Barat É, Comtat C, Dautremer T, Montagu T, Mohammad-Djafari A. A discrete-continuous Bayesian model for Emission Tomography. In: Proceedings of the IEEE International Conference on Image Processing, 2011a:1373–6.
  11. Fall MD, Barat É, Comtat C, Dautremer T, Montagu T, Stute S. Continuous space-time reconstruction in 4D PET. In: Proceedings of IEEE Medical Imaging Conference NSS/MIC, 2011b:2581–6.
  12. Fall MD, Barat É, Comtat C, Dautremer T, Montagu T, Stute S. Dynamic and clinical PETdata reconstruction: a nonparametric Bayesian approach. In: Proceedings of the IEEE International Conference on Image Processing, 2013:345–9.
  13. Townsend D. The theory and practice of 3D PET, Vol. 32. Boston: Kluwer Academic Publishers, 1998.
  14. Ferguson T. Bayesian density estimation by mixtures of Normal distributions. Recent advances in Statistics: papers in honor of Herman Chernoff on his sixtieth birthday, 1983:287–302.
  15. Lo AY. On a class of Bayesian Nonparametric estimates: I. density estimates. Annal Stat. 1984;12:351–57.
  16. Fall MD, Barat É, Comtat C, Dautremer T, Montagu T, Mohammad-Djafari A. A Bayesian nonparametric model for 3D Positron Emission Tomography. Bayesian Anal. 2012, Submitted.
  17. Fall MD, Barat É. Sampling the two-parameter Poisson Dirichlet distribution: state of the art and a new method. Technical report, CEA, 2011.
  18. Robert CP, Casella G. Monte Carlo statistical methods (Springer texts in statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc, 2005.
  19. Blei DM, Jordan M. Variational inference for Dirichlet process mixtures. Bayesian Anal. 2006;1:121–44.

MeSH Term

Algorithms
Bayes Theorem
Biostatistics
Brain
Humans
Image Interpretation, Computer-Assisted
Imaging, Three-Dimensional
Models, Statistical
Positron-Emission Tomography
Statistics, Nonparametric

Word Cloud

Created with Highcharts 10.0.0BayesianPETdataprovideframeworkimagingBiostatisticapplicationsoftenrequirecollectanalyzemassiveamountHencebecomenecessaryconsidernewstatisticalparadigmsperformwellcharacterizingcomplexNonparametricmethodswidelyusedofferskeyadvantagesfullymodel-basedprobabilistichighlyflexibleadaptablegoalpapermotivationnonparametricsBNPparticularbiomedicalapplicationnamelyPositronEmissionTomographyreconstructionNonparametricsBiostatistics:CaseImagingnonparametricMarkovChainMonteCarloinverseproblems

Similar Articles

Cited By