MTS1338, A Small RNA, Regulates Transcriptional Shifts Consistent With Bacterial Adaptation for Entering Into Dormancy and Survival Within Host Macrophages.

Elena G Salina, Artem Grigorov, Yulia Skvortsova, Konstantin Majorov, Oksana Bychenko, Albina Ostrik, Nadezhda Logunova, Dmitriy Ignatov, Arseny Kaprelyants, Alexander Apt, Tatyana Azhikina
Author Information
  1. Elena G Salina: Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia.
  2. Artem Grigorov: Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
  3. Yulia Skvortsova: Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
  4. Konstantin Majorov: Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia.
  5. Oksana Bychenko: Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
  6. Albina Ostrik: Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia.
  7. Nadezhda Logunova: Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia.
  8. Dmitriy Ignatov: Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
  9. Arseny Kaprelyants: Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Moscow, Russia.
  10. Alexander Apt: Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia.
  11. Tatyana Azhikina: Laboratory of Regulatory Transcriptomics, Department of Genomics and Postgenomic Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.

Abstract

Small non-coding RNAs play a significant role in bacterial adaptation to changing environmental conditions. We investigated the dynamics of expression of MTS1338, a small non-coding RNA of , in the mouse model , regulation of its expression in the infected macrophages, and the consequences of its overexpression in bacterial cultures. Here we demonstrate that MTS1338 significantly contributes to host-pathogen interactions. Activation of the host immune system triggered NO-inducible up-regulation of MTS1338 in macrophage-engulfed mycobacteria. Constitutive overexpression of MTS1338 in cultured mycobacteria improved their survival under low pH conditions. MTS1338 up-regulation launched a spectrum of shifts in the transcriptome profile similar to those reported for adaptation to hostile intra-macrophage environment. Using the RNA-seq approach, we demonstrate that gene expression changes accompanying MTS1338 overexpression indicate reduction in translational activity and bacterial growth. These changes indicate mycobacteria entering the dormant state. Taken together, our results suggest a direct involvement of this sRNA in the interplay between mycobacteria and the host immune system during infectious process.

Keywords

References

  1. Mol Microbiol. 2003 Apr;48(1):77-84 [PMID: 12657046]
  2. PLoS Pathog. 2014 May 15;10(5):e1004132 [PMID: 24830429]
  3. Curr Opin Microbiol. 2014 Apr;18:30-8 [PMID: 24607643]
  4. J Bacteriol. 2011 Oct;193(19):5105-18 [PMID: 21821774]
  5. Nature. 1991 Jun 6;351(6326):456-60 [PMID: 1904554]
  6. Front Cell Infect Microbiol. 2019 Jul 30;9:272 [PMID: 31428590]
  7. Nat Rev Microbiol. 2003 Nov;1(2):97-105 [PMID: 15035039]
  8. Infect Immun. 2003 Feb;71(2):697-707 [PMID: 12540548]
  9. J Bacteriol. 2007 Nov;189(22):8241-9 [PMID: 17873049]
  10. J Bacteriol. 2013 May;195(9):1859-68 [PMID: 23457247]
  11. J Exp Med. 2003 Sep 1;198(5):705-13 [PMID: 12953092]
  12. RNA Biol. 2012 Apr;9(4):427-36 [PMID: 22546938]
  13. Nucleic Acids Res. 2019 May 7;47(8):4292-4307 [PMID: 30820540]
  14. Annu Rev Immunol. 2009;27:393-422 [PMID: 19302046]
  15. PLoS Pathog. 2011 Nov;7(11):e1002342 [PMID: 22072964]
  16. Tuberculosis (Edinb). 2008 Nov;88(6):576-85 [PMID: 18667358]
  17. BMC Bioinformatics. 2017 Dec 1;18(1):534 [PMID: 29191175]
  18. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  19. PLoS One. 2010 Sep 02;5(9): [PMID: 20824060]
  20. Mol Cell. 2018 Jun 7;70(5):785-799 [PMID: 29358079]
  21. BMC Genomics. 2015 Nov 16;16:954 [PMID: 26573524]
  22. FEBS J. 2012 Aug;279(15):2781-92 [PMID: 22686939]
  23. Bioinformatics. 2012 Feb 15;28(4):464-9 [PMID: 22199388]
  24. Environ Microbiol. 2014 Jan;16(1):318-30 [PMID: 24536093]
  25. Biochem Soc Trans. 2017 Dec 15;45(6):1203-1212 [PMID: 29101308]
  26. J Bacteriol. 2000 Nov;182(22):6358-65 [PMID: 11053379]
  27. PLoS One. 2017 Mar 21;12(3):e0174079 [PMID: 28323872]
  28. J Mol Biol. 2004 Sep 10;342(2):605-17 [PMID: 15327959]
  29. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  30. Nat Rev Microbiol. 2007 Jan;5(1):39-47 [PMID: 17160001]
  31. Nature. 2013 Jul 11;499(7457):178-83 [PMID: 23823726]
  32. Front Cell Infect Microbiol. 2014 Jul 24;4:96 [PMID: 25105095]
  33. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8554-9 [PMID: 10880571]
  34. Int Immunopharmacol. 2007 Feb;7(2):230-40 [PMID: 17178391]
  35. Noncoding RNA Res. 2019 May 16;4(3):86-95 [PMID: 32083232]
  36. Tuberculosis (Edinb). 2005 Jan-Mar;85(1-2):65-72 [PMID: 15687029]
  37. PLoS Genet. 2015 Nov 30;11(11):e1005672 [PMID: 26618355]
  38. Proc Natl Acad Sci U S A. 2018 Jun 19;115(25):6464-6469 [PMID: 29871950]
  39. Methods Cell Biol. 1994;45:107-25 [PMID: 7707982]
  40. Methods Mol Biol. 2009;465:13-21 [PMID: 20560069]
  41. PLoS One. 2010 May 06;5(5):e10515 [PMID: 20463893]
  42. Clin Exp Immunol. 2004 Jan;135(1):19-28 [PMID: 14678260]
  43. Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):385-94 [PMID: 16253564]
  44. Infect Immun. 1997 Sep;65(9):3768-73 [PMID: 9284150]
  45. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  46. J Mol Microbiol Biotechnol. 2002 May;4(3):269-76 [PMID: 11931558]
  47. PLoS Pathog. 2011 Sep;7(9):e1002251 [PMID: 21980284]
  48. Microbiology (Reading). 2006 Sep;152(Pt 9):2735-2747 [PMID: 16946268]
  49. Infect Genet Evol. 2017 Nov;55:392-402 [PMID: 27771519]
  50. mBio. 2014 May 20;5(3):e01125-14 [PMID: 24846381]
  51. PLoS One. 2012;7(6):e38709 [PMID: 22719925]
  52. Pathog Dis. 2018 Jun 1;76(4): [PMID: 29796669]
  53. J Immunol. 2000 Nov 15;165(10):5921-31 [PMID: 11067954]
  54. Nucleic Acids Res. 2000 Jan 1;28(1):33-6 [PMID: 10592175]
  55. PLoS Pathog. 2014 May 29;10(5):e1004183 [PMID: 24874799]
  56. J Bacteriol. 2014 May;196(10):1853-65 [PMID: 24610707]
  57. Nucleic Acids Res. 2011 Sep 1;39(17):7400-14 [PMID: 21653552]
  58. Mol Microbiol. 2014 Oct;94(1):56-69 [PMID: 24975990]
  59. Gene. 2018 May 20;656:60-72 [PMID: 29501814]
  60. Bioorg Khim. 2014 Mar-Apr;40(2):253-6 [PMID: 25895346]
  61. Infect Immun. 2000 May;68(5):2888-98 [PMID: 10768986]

MeSH Term

Adaptation, Physiological
Gene Expression Regulation, Bacterial
Host-Pathogen Interactions
Macrophages
Microbial Viability
Mycobacterium tuberculosis
Nitric Oxide Synthase Type II
RNA, Bacterial
Transcription, Genetic
Tuberculosis

Chemicals

RNA, Bacterial
Nitric Oxide Synthase Type II

Word Cloud

Created with Highcharts 10.0.0MTS1338mycobacteriabacterialexpressionRNAoverexpressionSmallnon-codingadaptationconditionssmalldemonstratehostimmunesystemup-regulationRNA-seqchangesindicatetuberculosisRNAsplaysignificantrolechangingenvironmentalinvestigateddynamicsmousemodelregulationinfectedmacrophagesconsequencesculturessignificantlycontributeshost-pathogeninteractionsActivationtriggeredNO-induciblemacrophage-engulfedConstitutiveculturedimprovedsurvivallowpHlaunchedspectrumshiftstranscriptomeprofilesimilarreportedhostileintra-macrophageenvironmentUsingapproachgeneaccompanyingreductiontranslationalactivitygrowthenteringdormantstateTakentogetherresultssuggestdirectinvolvementsRNAinterplayinfectiousprocessRegulatesTranscriptionalShiftsConsistentBacterialAdaptationEnteringDormancySurvivalWithinHostMacrophagesMycobacteriuminfection

Similar Articles

Cited By