Filamentous phages reduce bacterial growth in low salinities.

Henry Goehlich, Olivia Roth, Carolin C Wendling
Author Information
  1. Henry Goehlich: Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. ORCID
  2. Olivia Roth: Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. ORCID
  3. Carolin C Wendling: Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany. ORCID

Abstract

Being non-lytic, filamentous phages can replicate at high frequencies and often carry virulence factors, which are important in the evolution and emergence of novel pathogens. However, their net effect on bacterial fitness remains unknown. To understand the ecology and evolution between filamentous phages and their hosts, it is important to assess (i) fitness effects of filamentous phages on their hosts and (ii) how these effects depend on the environment. To determine how the net effect on bacterial fitness by filamentous phages changes across environments, we constructed phage-bacteria infection networks at ambient 15 practical salinity units (PSU) and stressful salinities (11 and 7 PSU) using the marine bacterium, and its derived filamentous phages as model system. We observed no significant difference in network structure at 15 and 11 PSU. However, at 7 PSU phages significantly reduced bacterial growth changing network structure. This pattern was mainly driven by a significant increase in bacterial susceptibility. Our findings suggest that filamentous phages decrease bacterial growth, an indirect measure of fitness in stressful environmental conditions, which might impact bacterial communities, alter horizontal gene transfer events and possibly favour the emergence of novel pathogens in environmental .

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.4764584

References

  1. PLoS One. 2015 Apr 08;10(4):e0123874 [PMID: 25853566]
  2. Proc Biol Sci. 2012 May 22;279(1735):1896-903 [PMID: 22171085]
  3. Virol J. 2005 Apr 11;2:27 [PMID: 15823199]
  4. ISME J. 2011 Oct;5(10):1571-9 [PMID: 21472016]
  5. Proc Biol Sci. 2005 Jul 7;272(1570):1385-91 [PMID: 16006335]
  6. F1000Res. 2014 Aug 06;3:185 [PMID: 25485095]
  7. Proc Biol Sci. 2002 May 7;269(1494):931-6 [PMID: 12028776]
  8. Nature. 2018 Feb 1;554(7690):118-122 [PMID: 29364876]
  9. Biol Lett. 2018 Nov 14;14(11): [PMID: 30429242]
  10. Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1627-1632 [PMID: 30635420]
  11. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):E288-97 [PMID: 21709225]
  12. Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735): [PMID: 29061896]
  13. Evol Appl. 2017 Apr 19;10(6):603-615 [PMID: 28616067]
  14. Sci Adv. 2018 May 09;4(5):eaar8195 [PMID: 29750199]
  15. ISME J. 2013 Mar;7(3):520-32 [PMID: 23178671]
  16. Evolution. 2012 Aug;66(8):2528-39 [PMID: 22834750]
  17. Appl Environ Microbiol. 2006 Sep;72(9):6004-11 [PMID: 16957222]
  18. Viruses. 2013 Mar 11;5(3):806-23 [PMID: 23478639]
  19. Plasmid. 2015 May;79:1-7 [PMID: 25597519]
  20. BMC Evol Biol. 2017 Apr 11;17(1):98 [PMID: 28399796]
  21. Sci Rep. 2015 Dec 08;5:17889 [PMID: 26644037]
  22. Environ Microbiol Rep. 2009 Feb;1(1):71-7 [PMID: 23765723]
  23. Nature. 2009 May 14;459(7244):207-12 [PMID: 19444207]
  24. Sci Rep. 2018 Jul 2;8(1):9973 [PMID: 29967440]
  25. Curr Issues Mol Biol. 2011;13(2):51-76 [PMID: 21502666]
  26. J Virol Methods. 2013 May;189(2):283-9 [PMID: 23499611]
  27. Trends Microbiol. 2013 Feb;21(2):82-91 [PMID: 23245704]
  28. Evolution. 2008 Jan;62(1):1-11 [PMID: 18005153]

Word Cloud

Created with Highcharts 10.0.0phagesfilamentousbacterialfitnessPSUnetworkgrowthimportantevolutionemergencenovelpathogensHoweverneteffecthostseffectschangesinfection15salinitystressfulsalinities117significantstructureenvironmentalnon-lyticcanreplicatehighfrequenciesoftencarryvirulencefactorsremainsunknownunderstandecologyassessiidependenvironmentdetermineacrossenvironmentsconstructedphage-bacterianetworksambientpracticalunitsusingmarinebacteriumderivedmodelsystemobserveddifferencesignificantlyreducedchangingpatternmainlydrivenincreasesusceptibilityfindingssuggestdecreaseindirectmeasureconditionsmightimpactcommunitiesalterhorizontalgenetransfereventspossiblyfavourFilamentousreducelowVibriophage–bacteria

Similar Articles

Cited By