Single-cell transcriptional profiles in human skeletal muscle.

Aliza B Rubenstein, Gregory R Smith, Ulrika Raue, Gwénaëlle Begue, Kiril Minchev, Frederique Ruf-Zamojski, Venugopalan D Nair, Xingyu Wang, Lan Zhou, Elena Zaslavsky, Todd A Trappe, Scott Trappe, Stuart C Sealfon
Author Information
  1. Aliza B Rubenstein: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
  2. Gregory R Smith: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
  3. Ulrika Raue: Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA.
  4. Gwénaëlle Begue: Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA. ORCID
  5. Kiril Minchev: Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA.
  6. Frederique Ruf-Zamojski: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. ORCID
  7. Venugopalan D Nair: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
  8. Xingyu Wang: Department of Neurology, Boston University Medical Center, Boston, MA, 02118, USA.
  9. Lan Zhou: Department of Neurology, Boston University Medical Center, Boston, MA, 02118, USA.
  10. Elena Zaslavsky: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. ORCID
  11. Todd A Trappe: Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA.
  12. Scott Trappe: Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA.
  13. Stuart C Sealfon: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. stuart.sealfon@mssm.edu. ORCID

Abstract

Skeletal muscle is a heterogeneous tissue comprised of muscle fiber and mononuclear cell types that, in addition to movement, influences immunity, metabolism and cognition. We investigated the gene expression patterns of skeletal muscle cells using RNA-seq of subtype-pooled single human muscle fibers and single cell RNA-seq of mononuclear cells from human vastus lateralis, mouse quadriceps, and mouse diaphragm. We identified 11 human skeletal muscle mononuclear cell types, including two fibro-adipogenic progenitor (FAP) cell subtypes. The human FBN1+ FAP cell subtype is novel and a corresponding FBN1+ FAP cell type was also found in single cell RNA-seq analysis in mouse. Transcriptome exercise studies using bulk tissue analysis do not resolve changes in individual cell-type proportion or gene expression. The cell-type gene signatures provide the means to use computational methods to identify cell-type level changes in bulk studies. As an example, we analyzed public transcriptome data from an exercise training study and revealed significant changes in specific mononuclear cell-type proportions related to age, sex, acute exercise and training. Our single-cell expression map of skeletal muscle cell types will further the understanding of the diverse effects of exercise and the pathophysiology of muscle disease.

References

  1. Bentzinger, C. F., Wang, Y. X., Dumont, N. A. & Rudnicki, M. A. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14, 1062–1072 (2013). [PMID: 24232182]
  2. Saltin, B. & Gollnick, P. D. in Handbook of Physiology: Skeletal Muscle (eds. Peachy, L. D., Adnan, R. & Geiger, S. R.) 555–631 (1983).
  3. Bottinelli, R., Pellegrino, M. A., Canepari, M., Rossi, R. & Reggiani, C. Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J. Electromyogr. Kinesiol. 9, 87–95 (1999). [PMID: 10098709]
  4. Trappe, S. et al. Skeletal muscle signature of a champion sprint runner. J. Appl. Physiol. 118, 1460–1466 (2015). [PMID: 25749440]
  5. Konopka, A. R., Trappe, T. A., Jemiolo, B., Trappe, S. W. & Harber, M. P. Myosin heavy chain plasticity in aging skeletal muscle with aerobic exercise training. J. Gerontol. A Biol. Sci. Med. Sci. 66, 835–841 (2011). [PMID: 21659340]
  6. Williamson, D. L., Godard, M. P., Porter, D. A., Costill, D. L. & Trappe, S. W. Progressive resistance training reduces myosin heavy chain coexpression in single muscle fibers from older men. J. Appl. Physiol. 88, 627–633 (2000). [PMID: 10658030]
  7. Williamson, D. L., Gallagher, P. M., Carroll, C. C., Raue, U. & Trappe, S. W. Reduction in hybrid single muscle fiber proportions with resistance training in humans. J. Appl. Physiol. 91, 1955–1961 (2001). [PMID: 11641330]
  8. Raue, U. et al. Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J. Appl. Physiol. 112, 1625–1636 (2012). [PMID: 22302958]
  9. Murach, K. et al. Single muscle fiber gene expression with run taper. PLoS ONE 9, e108547 (2014). [PMID: 25268477]
  10. Pedersen, B. K. In Metabolic Syndrome (ed. Ahima, R. S.) 541–554, https://doi.org/10.1007/978-3-319-11251-0_31 (Springer International Publishing, 2016). [DOI: 10.1007/978-3-319-11251-0_31]
  11. Joe, A. W. B. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010). [PMID: 20081841]
  12. Abou-Khalil, R., Mounier, R. & Chazaud, B. Regulation of myogenic stem cell behavior by vessel cells: the “ménage à trois” of satellite cells, periendothelial cells and endothelial cells. Cell Cycle 9, 892–896 (2010). [PMID: 20160472]
  13. Uezumi, A. et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124, 3654–3664 (2011). [PMID: 22045730]
  14. Wosczyna, M. N., Biswas, A. A., Cogswell, C. A. & Goldhamer, D. J. Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J. Bone Miner. Res. 27, 1004–1017 (2012). [PMID: 22307978]
  15. Chikina, M., Zaslavsky, E. & Sealfon, S. C. CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations. Bioinformatics 31, 1584–1591 (2015). [PMID: 25583121]
  16. Mao, W., Zaslavsky, E., Hartmann, B. M., Sealfon, S. C. & Chikina, M. Pathway-Level Information ExtractoR (PLIER) for gene expression data. Nature Methods (2019).
  17. Campbell, W. G. et al. Differential global gene expression in red and white skeletal muscle. Am J Physiol, Cell Physiol 280, C763–8 (2001). [PMID: 11245591]
  18. Chemello, F. et al. Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Rep. 26, 3784–3797.e8 (2019). [PMID: 30917329]
  19. Chemello, F. et al. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. PLoS ONE 6, e16807 (2011). [PMID: 21364935]
  20. Begue, G., Raue, U., Jemiolo, B. & Trappe, S. DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers. J. Appl. Physiol. 122, 952–967 (2017). [PMID: 28057818]
  21. Fukada, S. et al. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25, 2448–2459 (2007). [PMID: 17600112]
  22. Uezumi, A. et al. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis. 5, e1186 (2014). [PMID: 24743741]
  23. Uezumi, A. et al. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle. Stem Cell Rep. 7, 263–278 (2016). [DOI: 10.1016/j.stemcr.2016.07.004]
  24. Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z. & Clark, H. F. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE 4, e6098 (2009). [PMID: 19568420]
  25. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011). [PMID: 21241896]
  26. Giordani, L. et al. High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Mol. Cell 74, 609–621.e6 (2019). [PMID: 30922843]
  27. Dell’Orso, S. et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development 146, (2019). [PMID: 30890574]
  28. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). [PMID: 29608179]
  29. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017). [PMID: 28960196]
  30. Low, M., Eisner, C. & Rossi, F. Fibro/adipogenic progenitors (faps): isolation by FACS and culture. Methods Mol. Biol. 1556, 179–189 (2017). [PMID: 28247350]
  31. Kjaer, M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84, 649–698 (2004). [PMID: 15044685]
  32. Gillies, A. R. & Lieber, R. L. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44, 318–331 (2011). [PMID: 21949456]
  33. Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011). [PMID: 22013216]
  34. Frontera, W. R. & Ochala, J. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96, 183–195 (2015). [PMID: 25294644]
  35. Ogata, H. et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999). [PMID: 9847135]
  36. Fabregat, A. et al. The Reactome pathway Knowledgebase. Nucleic Acids Res. 44, D481–7 (2016). [PMID: 26656494]
  37. Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010). [PMID: 20081842]
  38. Chapman, M. A., Meza, R. & Lieber, R. L. Skeletal muscle fibroblasts in health and disease. Differentiation. 92, 108–115 (2016). [PMID: 27282924]
  39. Uezumi, A., Ikemoto-Uezumi, M. & Tsuchida, K. Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Front. Physiol. 5, 68 (2014). [PMID: 24605102]
  40. Balboni, T. A., Gobezie, R. & Mamon, H. J. Heterotopic ossification: Pathophysiology, clinical features, and the role of radiotherapy for prophylaxis. Int. J. Radiat. Oncol. Biol. Phys. 65, 1289–1299 (2006). [PMID: 16863921]
  41. Potter, B. K., Burns, T. C., Lacap, A. P., Granville, R. R. & Gajewski, D. A. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J. Bone Joint Surg. Am. 89, 476–486 (2007). [PMID: 17332095]
  42. Shore, E. M. & Kaplan, F. S. Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP). Bone 43, 427–433 (2008). [PMID: 18590993]
  43. Kaplan, F. S. & Shore, E. M. Progressive osseous heteroplasia. J. Bone Miner. Res. 15, 2084–2094 (2000). [PMID: 11092391]
  44. Cushner, F. D. & Morwessel, R. M. Myositis ossificans traumatica. Orthop. Rev. 21, 1319–1326 (1992). [PMID: 1461667]
  45. Mithieux, S. M. & Weiss, A. S. In Fibrous Proteins: Coiled-Coils, Collagen and Elastomers 70, 437–461 (Elsevier, 2005).
  46. Kozel, B. A. et al. Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J. Cell. Physiol. 207, 87–96 (2006). [PMID: 16261592]
  47. Trappe, T. A. et al. COX inhibitor influence on skeletal muscle fiber size and metabolic adaptations to resistance exercise in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1289–1294 (2016). [PMID: 26817469]
  48. Schantz, P. Capillary supply in hypertrophied human skeletal muscle. Acta Physiol. Scand. 114, 635–637 (1982). [PMID: 7136793]
  49. Hather, B. M., Tesch, P. A., Buchanan, P. & Dudley, G. A. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol. Scand. 143, 177–185 (1991). [PMID: 1835816]
  50. Coggan, A. R. et al. Histochemical and enzymatic characteristics of skeletal muscle in master athletes. J. Appl. Physiol. 68, 1896–1901 (1990). [PMID: 2361892]
  51. Coggan, A. R. et al. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J. Gerontol. 47, B71–B76 (1992). [PMID: 1573181]
  52. Gries, K. J. et al. Cardiovascular and skeletal muscle health with lifelong exercise. J. Appl. Physiol. 125, 1636–1645 (2018). [PMID: 30161005]
  53. Northern, A. L., Rutter, S. M. & Peterson, C. M. Cyclic changes in the concentrations of peripheral blood immune cells during the normal menstrual cycle. Proc. Soc. Exp. Biol. Med. 207, 81–88 (1994). [PMID: 7938041]
  54. Ghosh, M., Rodriguez-Garcia, M. & Wira, C. R. The immune system in menopause: pros and cons of hormone therapy. J. Steroid Biochem. Mol. Biol. 142, 171–175 (2014). [PMID: 24041719]
  55. Peake, J. M., Neubauer, O., Della Gatta, P. A. & Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 122, 559–570 (2017). [PMID: 28035017]
  56. Paulsen, G. et al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med. Sci. Sports Exerc. 42, 75–85 (2010). [PMID: 20010127]
  57. Paulsen, G. et al. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise. Scand. J. Med. Sci. Sports 20, e195–207 (2010). [PMID: 19522751]
  58. Maruvada, P. et al. NIH Consortium on Molecular Transducers of Physical Activity (MoTrPAC). Advances in Nutrition (2017).
  59. Klitgaard, H. et al. Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflugers Arch. 416, 470–472 (1990). [PMID: 2399119]
  60. Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).
  61. Broad Institute. Picard Toolkit. at http://broadinstitute.github.io/picard/ (2016).
  62. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). [DOI: 10.1093/bioinformatics/bts635]
  63. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). [DOI: 10.1093/bioinformatics/btt656]
  64. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). [PMID: 25516281]
  65. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). [PMID: 28091601]
  66. Li, L. et al. Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell 20, 858–873.e4 (2017). [PMID: 28457750]
  67. McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467 (2013). [PMID: 23267174]
  68. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21 (2019). [DOI: 10.1016/j.cell.2019.05.031]
  69. Wu, J., Irizarry, R., MacDonald, J. & Gentry, J. gcrma: Background Adjustment Using Sequence Information. (2018).
  70. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57, 289–300 (1995).

Grants

  1. R01 AR074428/NIAMS NIH HHS
  2. U24 DK112331/NIDDK NIH HHS

MeSH Term

Adipogenesis
Animals
Biomarkers
Diaphragm
Female
Humans
Male
Mice
Muscle, Skeletal
Quadriceps Muscle
Single-Cell Analysis
Transcriptome

Chemicals

Biomarkers