Aliza B Rubenstein, Gregory R Smith, Ulrika Raue, Gwénaëlle Begue, Kiril Minchev, Frederique Ruf-Zamojski, Venugopalan D Nair, Xingyu Wang, Lan Zhou, Elena Zaslavsky, Todd A Trappe, Scott Trappe, Stuart C Sealfon
Bentzinger, C. F., Wang, Y. X., Dumont, N. A. & Rudnicki, M. A. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14, 1062–1072 (2013).
[PMID:
24232182]
Saltin, B. & Gollnick, P. D. in Handbook of Physiology: Skeletal Muscle (eds. Peachy, L. D., Adnan, R. & Geiger, S. R.) 555–631 (1983).
Bottinelli, R., Pellegrino, M. A., Canepari, M., Rossi, R. & Reggiani, C. Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J. Electromyogr. Kinesiol. 9, 87–95 (1999).
[PMID:
10098709]
Trappe, S. et al. Skeletal muscle signature of a champion sprint runner. J. Appl. Physiol. 118, 1460–1466 (2015).
[PMID:
25749440]
Konopka, A. R., Trappe, T. A., Jemiolo, B., Trappe, S. W. & Harber, M. P. Myosin heavy chain plasticity in aging skeletal muscle with aerobic exercise training. J. Gerontol. A Biol. Sci. Med. Sci. 66, 835–841 (2011).
[PMID:
21659340]
Williamson, D. L., Godard, M. P., Porter, D. A., Costill, D. L. & Trappe, S. W. Progressive resistance training reduces myosin heavy chain coexpression in single muscle fibers from older men. J. Appl. Physiol. 88, 627–633 (2000).
[PMID:
10658030]
Williamson, D. L., Gallagher, P. M., Carroll, C. C., Raue, U. & Trappe, S. W. Reduction in hybrid single muscle fiber proportions with resistance training in humans. J. Appl. Physiol. 91, 1955–1961 (2001).
[PMID:
11641330]
Raue, U. et al. Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J. Appl. Physiol. 112, 1625–1636 (2012).
[PMID:
22302958]
Murach, K. et al. Single muscle fiber gene expression with run taper. PLoS ONE 9, e108547 (2014).
[PMID:
25268477]
Pedersen, B. K. In Metabolic Syndrome (ed. Ahima, R. S.) 541–554, https://doi.org/10.1007/978-3-319-11251-0_31 (Springer International Publishing, 2016).
[DOI:
10.1007/978-3-319-11251-0_31]
Joe, A. W. B. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).
[PMID:
20081841]
Abou-Khalil, R., Mounier, R. & Chazaud, B. Regulation of myogenic stem cell behavior by vessel cells: the “ménage à trois” of satellite cells, periendothelial cells and endothelial cells. Cell Cycle 9, 892–896 (2010).
[PMID:
20160472]
Uezumi, A. et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124, 3654–3664 (2011).
[PMID:
22045730]
Wosczyna, M. N., Biswas, A. A., Cogswell, C. A. & Goldhamer, D. J. Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J. Bone Miner. Res. 27, 1004–1017 (2012).
[PMID:
22307978]
Chikina, M., Zaslavsky, E. & Sealfon, S. C. CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations. Bioinformatics 31, 1584–1591 (2015).
[PMID:
25583121]
Mao, W., Zaslavsky, E., Hartmann, B. M., Sealfon, S. C. & Chikina, M. Pathway-Level Information ExtractoR (PLIER) for gene expression data. Nature Methods (2019).
Campbell, W. G. et al. Differential global gene expression in red and white skeletal muscle. Am J Physiol, Cell Physiol 280, C763–8 (2001).
[PMID:
11245591]
Chemello, F. et al. Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Rep. 26, 3784–3797.e8 (2019).
[PMID:
30917329]
Chemello, F. et al. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. PLoS ONE 6, e16807 (2011).
[PMID:
21364935]
Begue, G., Raue, U., Jemiolo, B. & Trappe, S. DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers. J. Appl. Physiol. 122, 952–967 (2017).
[PMID:
28057818]
Fukada, S. et al. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25, 2448–2459 (2007).
[PMID:
17600112]
Uezumi, A. et al. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis. 5, e1186 (2014).
[PMID:
24743741]
Uezumi, A. et al. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle. Stem Cell Rep. 7, 263–278 (2016).
[DOI:
10.1016/j.stemcr.2016.07.004]
Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z. & Clark, H. F. Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE 4, e6098 (2009).
[PMID:
19568420]
Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).
[PMID:
21241896]
Giordani, L. et al. High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Mol. Cell 74, 609–621.e6 (2019).
[PMID:
30922843]
Dell’Orso, S. et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development 146, (2019).
[PMID:
30890574]
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
[PMID:
29608179]
van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).
[PMID:
28960196]
Low, M., Eisner, C. & Rossi, F. Fibro/adipogenic progenitors (faps): isolation by FACS and culture. Methods Mol. Biol. 1556, 179–189 (2017).
[PMID:
28247350]
Kjaer, M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84, 649–698 (2004).
[PMID:
15044685]
Gillies, A. R. & Lieber, R. L. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44, 318–331 (2011).
[PMID:
21949456]
Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011).
[PMID:
22013216]
Frontera, W. R. & Ochala, J. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96, 183–195 (2015).
[PMID:
25294644]
Ogata, H. et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).
[PMID:
9847135]
Fabregat, A. et al. The Reactome pathway Knowledgebase. Nucleic Acids Res. 44, D481–7 (2016).
[PMID:
26656494]
Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).
[PMID:
20081842]
Chapman, M. A., Meza, R. & Lieber, R. L. Skeletal muscle fibroblasts in health and disease. Differentiation. 92, 108–115 (2016).
[PMID:
27282924]
Uezumi, A., Ikemoto-Uezumi, M. & Tsuchida, K. Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Front. Physiol. 5, 68 (2014).
[PMID:
24605102]
Balboni, T. A., Gobezie, R. & Mamon, H. J. Heterotopic ossification: Pathophysiology, clinical features, and the role of radiotherapy for prophylaxis. Int. J. Radiat. Oncol. Biol. Phys. 65, 1289–1299 (2006).
[PMID:
16863921]
Potter, B. K., Burns, T. C., Lacap, A. P., Granville, R. R. & Gajewski, D. A. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J. Bone Joint Surg. Am. 89, 476–486 (2007).
[PMID:
17332095]
Shore, E. M. & Kaplan, F. S. Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP). Bone 43, 427–433 (2008).
[PMID:
18590993]
Kaplan, F. S. & Shore, E. M. Progressive osseous heteroplasia. J. Bone Miner. Res. 15, 2084–2094 (2000).
[PMID:
11092391]
Cushner, F. D. & Morwessel, R. M. Myositis ossificans traumatica. Orthop. Rev. 21, 1319–1326 (1992).
[PMID:
1461667]
Mithieux, S. M. & Weiss, A. S. In Fibrous Proteins: Coiled-Coils, Collagen and Elastomers 70, 437–461 (Elsevier, 2005).
Kozel, B. A. et al. Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J. Cell. Physiol. 207, 87–96 (2006).
[PMID:
16261592]
Trappe, T. A. et al. COX inhibitor influence on skeletal muscle fiber size and metabolic adaptations to resistance exercise in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1289–1294 (2016).
[PMID:
26817469]
Schantz, P. Capillary supply in hypertrophied human skeletal muscle. Acta Physiol. Scand. 114, 635–637 (1982).
[PMID:
7136793]
Hather, B. M., Tesch, P. A., Buchanan, P. & Dudley, G. A. Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol. Scand. 143, 177–185 (1991).
[PMID:
1835816]
Coggan, A. R. et al. Histochemical and enzymatic characteristics of skeletal muscle in master athletes. J. Appl. Physiol. 68, 1896–1901 (1990).
[PMID:
2361892]
Coggan, A. R. et al. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J. Gerontol. 47, B71–B76 (1992).
[PMID:
1573181]
Gries, K. J. et al. Cardiovascular and skeletal muscle health with lifelong exercise. J. Appl. Physiol. 125, 1636–1645 (2018).
[PMID:
30161005]
Northern, A. L., Rutter, S. M. & Peterson, C. M. Cyclic changes in the concentrations of peripheral blood immune cells during the normal menstrual cycle. Proc. Soc. Exp. Biol. Med. 207, 81–88 (1994).
[PMID:
7938041]
Ghosh, M., Rodriguez-Garcia, M. & Wira, C. R. The immune system in menopause: pros and cons of hormone therapy. J. Steroid Biochem. Mol. Biol. 142, 171–175 (2014).
[PMID:
24041719]
Peake, J. M., Neubauer, O., Della Gatta, P. A. & Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 122, 559–570 (2017).
[PMID:
28035017]
Paulsen, G. et al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med. Sci. Sports Exerc. 42, 75–85 (2010).
[PMID:
20010127]
Paulsen, G. et al. A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise. Scand. J. Med. Sci. Sports 20, e195–207 (2010).
[PMID:
19522751]
Maruvada, P. et al. NIH Consortium on Molecular Transducers of Physical Activity (MoTrPAC). Advances in Nutrition (2017).
Klitgaard, H. et al. Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training. Pflugers Arch. 416, 470–472 (1990).
[PMID:
2399119]
Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).
Broad Institute. Picard Toolkit. at http://broadinstitute.github.io/picard/ (2016).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
[DOI:
10.1093/bioinformatics/btt656]
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
[PMID:
25516281]
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
[PMID:
28091601]
Li, L. et al. Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell 20, 858–873.e4 (2017).
[PMID:
28457750]
McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467 (2013).
[PMID:
23267174]
Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21 (2019).
[DOI:
10.1016/j.cell.2019.05.031]
Wu, J., Irizarry, R., MacDonald, J. & Gentry, J. gcrma: Background Adjustment Using Sequence Information. (2018).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57, 289–300 (1995).