Polycyclic Aromatic Hydrocarbons Containing A Pyrrolopyridazine Core.
Marcus Richter, Yubin Fu, Evgenia Dmitrieva, Jan J Weigand, Alexey Popov, Reinhard Berger, Junzhi Liu, Xinliang Feng
Author Information
Marcus Richter: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
Yubin Fu: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
Evgenia Dmitrieva: Leibniz Institute for Solid State and Materials Research, Nanoscale Chemistry, Center of Spectroelectrochemistry, Helmholtzstrasse 20, 01069, Dresden, Germany.
Jan J Weigand: Dresden University of Technology, Faculty of Chemistry and Food Chemistry, Institute of Inorganic Molecular Chemistry, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
Alexey Popov: Leibniz Institute for Solid State and Materials Research, Nanoscale Chemistry, Center of Spectroelectrochemistry, Helmholtzstrasse 20, 01069, Dresden, Germany. ORCID
Reinhard Berger: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
Junzhi Liu: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
Xinliang Feng: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
Polycyclic aromatic azomethine ylides (PAMYs) are versatile building blocks for the bottom-up construction of unprecedented nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs). Here, we demonstrate the 1,3-dipolar cycloaddition between PAMY and 1,4-diphenylbut-2-yne-1,4-dione and the subsequent condensation reaction with hydrazine, which led to unique N-PAHs with a phenyl-substituted pyrrolopyridazine core (PP-1 and PP-2). The molecular structures of pristine PP-1 and tert-butyl-substituted PP-2 were verified by NMR spectroscopy and mass spectrometry. Moreover, the structure of PP-2 was unambiguously elucidated by X-ray single crystal analysis. The optoelectronic properties were investigated by solvent-dependent UV-Vis absorption and fluorescence emission spectroscopy as well as cyclic voltammetry. Additionally, density functional theory (DFT) calculations showed that PP-1 and PP-2 exhibit push-pull behavior. Furthermore, in situ EPR/UV-Vis-NIR spectroelectrochemistry allowed the detailed insight into the spectroscopic properties and spin distribution of radical cation species of PP-2.
M. Ball, Y. Zhong, Y. Wu, C. Schenck, F. Ng, M. Steigerwald, S. Xiao, C. Nuckolls, Acc. Chem. Res. 2015, 48, 267-276;
X. Yan, L.-s. Li, J. Mater. Chem. 2011, 21, 3295-3300;
K. K. Baldridge, J. S. Siegel, Angew. Chem. Int. Ed. 2013, 52, 5436-5438;
W. Pisula, X. Feng, K. Müllen, Chem. Mater. 2011, 23, 554-567;
Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 2011, 3, 197;
Z. Sun, Q. Ye, C. Chi, J. Wu, Chem. Soc. Rev. 2012, 41, 7857-7889;
W. Chen, X. Li, G. Long, Y. Li, R. Ganguly, M. Zhang, N. Aratani, H. Yamada, M. Liu, Q. Zhang, Angew. Chem. In. Ed. 2018, 57, 13555-13559;
W. Chen, X. Li, G. Long, Y. Li, R. Ganguly, M. Zhang, N. Aratani, H. Yamada, M. Liu, Q. Zhang, Angew. Chem. 2018, 130, 13743-13747;
J. Li, S. Chen, Z. Wang, Q. Zhang, Chem. Rec. 2016, 16, 1518-1530.
R. Rieger, K. Müllen, J. Phys. Org. Chem. 2010, 23, 315-325;
A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616-6643;
Z. Sun, J. Wu, J. Mater. Chem. 2012, 22, 4151-4160;
K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739;
P.-Y. Gu, Y. Zhao, J.-H. He, J. Zhang, C. Wang, Q.-F. Xu, J.-M. Lu, X. W. Sun, Q. Zhang, J. Org. Chem. 2015, 80, 3030-3035;
P.-Y. Gu, Z. Wang, G. Liu, H. Yao, Z. Wang, Y. Li, J. Zhu, S. Li, Q. Zhang, Chem. Mater. 2017, 29, 4172-4175.
J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, R. Fasel, Nat. Nanotechnol. 2014, 9, 896;
H. Sahabudeen, H. Qi, B. A. Glatz, D. Tranca, R. Dong, Y. Hou, T. Zhang, C. Kuttner, T. Lehnert, G. Seifert, U. Kaiser, A. Fery, Z. Zheng, X. Feng, Nat. Commun. 2016, 7, 13461;
L. Ji, A. Friedrich, I. Krummenacher, A. Eichhorn, H. Braunschweig, M. Moos, S. Hahn, F. L. Geyer, O. Tverskoy, J. Han, C. Lambert, A. Dreuw, T. B. Marder, U. H. F. Bunz, J. Amer. Chem. Soc. 2017, 139, 15968-15976;
M. Richter, K. S. Schellhammer, P. Machata, G. Cuniberti, A. Popov, F. Ortmann, R. Berger, K. Müllen, X. Feng, Org. Chem. Front. 2017, 4, 847-852;
M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. Int. Ed. 2010, 49, 740-743;
M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. 2010, 122, 752-755;
A. Mateo-Alonso, Chem. Soc. Rev. 2014, 43, 6311-6324;
A. Hirsch, B. Nuber, Acc. Chem. Res. 1999, 32, 795-804;
Z. Wang, P. Gu, G. Liu, H. Yao, Y. Wu, Y. Li, G. Rakesh, J. Zhu, H. Fu, Q. Zhang, Chem. Commun. 2017, 53, 7772-7775.
U. H. F. Bunz, Acc. Chem. Res. 2015, 48, 1676-1686;
U. H. F. Bunz, J. U. Engelhart, Chem. - Eur. J. 2016, 22, 4680-4689;
R. Tang, F. Zhang, Y. Fu, Q. Xu, X. Wang, X. Zhuang, D. Wu, A. Giannakopoulos, D. Beljonne, X. Feng, Org. Lett. 2014, 16, 4726-4729.
M. Takase, T. Narita, W. Fujita, M. S. Asano, T. Nishinaga, H. Benten, K. Yoza, K. Müllen, J. Amer. Chem. Soc. 2013, 135, 8031-8040;
S. Higashibayashi, P. Pandit, R. Haruki, S.-i. Adachi, R. Kumai, Angew. Chem. Int. Ed. 2016, 55, 10830-10834;
S. Higashibayashi, P. Pandit, R. Haruki, S.-i. Adachi, R. Kumai, Angew. Chem. 2016, 128, 10988-10992.
H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781-794;
D. Wei, Y. Liu, Adv. Mater. 2010, 22, 3225-3241.
R. Berger, M. Wagner, X. Feng, K. Müllen, Chem.Sci. 2015, 6, 436-441.
X.-Y. Wang, M. Richter, Y. He, J. Björk, A. Riss, R. Rajesh, M. Garnica, F. Hennersdorf, J. J. Weigand, A. Narita, R. Berger, X. Feng, W. Auwärter, J. V. Barth, C.-A. Palma, K. Müllen, Nat. Commun. 2017, 8, 1948;
S. Ito, Y. Tokimaru, K. Nozaki, Chem. Commun. 2015, 51, 221-224.
M. Richter, S. Hahn, E. Dmitrieva, F. Rominger, A. Popov, U. H. F. Bunz, X. Feng, R. Berger, Chem. - Eur. J. 2019, 25, 1345-1352;
Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. Int. Ed. 2017, 56, 15560-15564;
Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. 2017, 129, 15766-15770;
Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. Int. Ed. 2018, 57, 9818-9822;
Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. 2018, 130, 9966-9970.
G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991-1024.
B. König, Angew. Chem. 1996, 108, 115-116.
F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73-78.
S. Stoll, A. Schweiger, J. Magn. Res. 2006, 178, 42-55.