Polycyclic Aromatic Hydrocarbons Containing A Pyrrolopyridazine Core.

Marcus Richter, Yubin Fu, Evgenia Dmitrieva, Jan J Weigand, Alexey Popov, Reinhard Berger, Junzhi Liu, Xinliang Feng
Author Information
  1. Marcus Richter: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
  2. Yubin Fu: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
  3. Evgenia Dmitrieva: Leibniz Institute for Solid State and Materials Research, Nanoscale Chemistry, Center of Spectroelectrochemistry, Helmholtzstrasse 20, 01069, Dresden, Germany.
  4. Jan J Weigand: Dresden University of Technology, Faculty of Chemistry and Food Chemistry, Institute of Inorganic Molecular Chemistry, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
  5. Alexey Popov: Leibniz Institute for Solid State and Materials Research, Nanoscale Chemistry, Center of Spectroelectrochemistry, Helmholtzstrasse 20, 01069, Dresden, Germany. ORCID
  6. Reinhard Berger: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
  7. Junzhi Liu: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID
  8. Xinliang Feng: Dresden University of Technology, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Institute for Molecular Functional Materials, Mommsenstraße 4, 01069, Dresden, Germany. ORCID

Abstract

Polycyclic aromatic azomethine ylides (PAMYs) are versatile building blocks for the bottom-up construction of unprecedented nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs). Here, we demonstrate the 1,3-dipolar cycloaddition between PAMY and 1,4-diphenylbut-2-yne-1,4-dione and the subsequent condensation reaction with hydrazine, which led to unique N-PAHs with a phenyl-substituted pyrrolopyridazine core (PP-1 and PP-2). The molecular structures of pristine PP-1 and tert-butyl-substituted PP-2 were verified by NMR spectroscopy and mass spectrometry. Moreover, the structure of PP-2 was unambiguously elucidated by X-ray single crystal analysis. The optoelectronic properties were investigated by solvent-dependent UV-Vis absorption and fluorescence emission spectroscopy as well as cyclic voltammetry. Additionally, density functional theory (DFT) calculations showed that PP-1 and PP-2 exhibit push-pull behavior. Furthermore, in situ EPR/UV-Vis-NIR spectroelectrochemistry allowed the detailed insight into the spectroscopic properties and spin distribution of radical cation species of PP-2.

Keywords

References

  1.  
  2. M. Ball, Y. Zhong, Y. Wu, C. Schenck, F. Ng, M. Steigerwald, S. Xiao, C. Nuckolls, Acc. Chem. Res. 2015, 48, 267-276;
  3. X. Yan, L.-s. Li, J. Mater. Chem. 2011, 21, 3295-3300;
  4. K. K. Baldridge, J. S. Siegel, Angew. Chem. Int. Ed. 2013, 52, 5436-5438;
  5. W. Pisula, X. Feng, K. Müllen, Chem. Mater. 2011, 23, 554-567;
  6. Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 2011, 3, 197;
  7. Z. Sun, Q. Ye, C. Chi, J. Wu, Chem. Soc. Rev. 2012, 41, 7857-7889;
  8. W. Chen, X. Li, G. Long, Y. Li, R. Ganguly, M. Zhang, N. Aratani, H. Yamada, M. Liu, Q. Zhang, Angew. Chem. In. Ed. 2018, 57, 13555-13559;
  9. W. Chen, X. Li, G. Long, Y. Li, R. Ganguly, M. Zhang, N. Aratani, H. Yamada, M. Liu, Q. Zhang, Angew. Chem. 2018, 130, 13743-13747;
  10. J. Li, S. Chen, Z. Wang, Q. Zhang, Chem. Rec. 2016, 16, 1518-1530.
  11.  
  12. R. Rieger, K. Müllen, J. Phys. Org. Chem. 2010, 23, 315-325;
  13. A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616-6643;
  14. Z. Sun, J. Wu, J. Mater. Chem. 2012, 22, 4151-4160;
  15. K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739;
  16. P.-Y. Gu, Y. Zhao, J.-H. He, J. Zhang, C. Wang, Q.-F. Xu, J.-M. Lu, X. W. Sun, Q. Zhang, J. Org. Chem. 2015, 80, 3030-3035;
  17. P.-Y. Gu, Z. Wang, G. Liu, H. Yao, Z. Wang, Y. Li, J. Zhu, S. Li, Q. Zhang, Chem. Mater. 2017, 29, 4172-4175.
  18.  
  19. J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, R. Fasel, Nat. Nanotechnol. 2014, 9, 896;
  20. H. Sahabudeen, H. Qi, B. A. Glatz, D. Tranca, R. Dong, Y. Hou, T. Zhang, C. Kuttner, T. Lehnert, G. Seifert, U. Kaiser, A. Fery, Z. Zheng, X. Feng, Nat. Commun. 2016, 7, 13461;
  21. L. Ji, A. Friedrich, I. Krummenacher, A. Eichhorn, H. Braunschweig, M. Moos, S. Hahn, F. L. Geyer, O. Tverskoy, J. Han, C. Lambert, A. Dreuw, T. B. Marder, U. H. F. Bunz, J. Amer. Chem. Soc. 2017, 139, 15968-15976;
  22. M. Richter, K. S. Schellhammer, P. Machata, G. Cuniberti, A. Popov, F. Ortmann, R. Berger, K. Müllen, X. Feng, Org. Chem. Front. 2017, 4, 847-852;
  23. M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. Int. Ed. 2010, 49, 740-743;
  24. M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. 2010, 122, 752-755;
  25. A. Mateo-Alonso, Chem. Soc. Rev. 2014, 43, 6311-6324;
  26. A. Hirsch, B. Nuber, Acc. Chem. Res. 1999, 32, 795-804;
  27. Z. Wang, P. Gu, G. Liu, H. Yao, Y. Wu, Y. Li, G. Rakesh, J. Zhu, H. Fu, Q. Zhang, Chem. Commun. 2017, 53, 7772-7775.
  28.  
  29. U. H. F. Bunz, Acc. Chem. Res. 2015, 48, 1676-1686;
  30. U. H. F. Bunz, J. U. Engelhart, Chem. - Eur. J. 2016, 22, 4680-4689;
  31. R. Tang, F. Zhang, Y. Fu, Q. Xu, X. Wang, X. Zhuang, D. Wu, A. Giannakopoulos, D. Beljonne, X. Feng, Org. Lett. 2014, 16, 4726-4729.
  32.  
  33. M. Takase, T. Narita, W. Fujita, M. S. Asano, T. Nishinaga, H. Benten, K. Yoza, K. Müllen, J. Amer. Chem. Soc. 2013, 135, 8031-8040;
  34. S. Higashibayashi, P. Pandit, R. Haruki, S.-i. Adachi, R. Kumai, Angew. Chem. Int. Ed. 2016, 55, 10830-10834;
  35. S. Higashibayashi, P. Pandit, R. Haruki, S.-i. Adachi, R. Kumai, Angew. Chem. 2016, 128, 10988-10992.
  36.  
  37. H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781-794;
  38. D. Wei, Y. Liu, Adv. Mater. 2010, 22, 3225-3241.
  39. R. Berger, M. Wagner, X. Feng, K. Müllen, Chem.Sci. 2015, 6, 436-441.
  40.  
  41. X.-Y. Wang, M. Richter, Y. He, J. Björk, A. Riss, R. Rajesh, M. Garnica, F. Hennersdorf, J. J. Weigand, A. Narita, R. Berger, X. Feng, W. Auwärter, J. V. Barth, C.-A. Palma, K. Müllen, Nat. Commun. 2017, 8, 1948;
  42. S. Ito, Y. Tokimaru, K. Nozaki, Chem. Commun. 2015, 51, 221-224.
  43.  
  44. M. Richter, S. Hahn, E. Dmitrieva, F. Rominger, A. Popov, U. H. F. Bunz, X. Feng, R. Berger, Chem. - Eur. J. 2019, 25, 1345-1352;
  45. Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. Int. Ed. 2017, 56, 15560-15564;
  46. Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. 2017, 129, 15766-15770;
  47. Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. Int. Ed. 2018, 57, 9818-9822;
  48. Y. Tokimaru, S. Ito, K. Nozaki, Angew. Chem. 2018, 130, 9966-9970.
  49. G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991-1024.
  50. B. König, Angew. Chem. 1996, 108, 115-116.
  51. F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73-78.
  52. S. Stoll, A. Schweiger, J. Magn. Res. 2006, 178, 42-55.

Word Cloud

Created with Highcharts 10.0.0PP-2aromaticPP-1PolycyclicazomethineylidespolycyclichydrocarbonsN-PAHs1cycloadditionspectroscopypropertiesradicalPAMYsversatilebuildingblocksbottom-upconstructionunprecedentednitrogen-containingdemonstrate3-dipolarPAMY4-diphenylbut-2-yne-14-dionesubsequentcondensationreactionhydrazineleduniquephenyl-substitutedpyrrolopyridazinecoremolecularstructurespristinetert-butyl-substitutedverifiedNMRmassspectrometryMoreoverstructureunambiguouslyelucidatedX-raysinglecrystalanalysisoptoelectronicinvestigatedsolvent-dependentUV-VisabsorptionfluorescenceemissionwellcyclicvoltammetryAdditionallydensityfunctionaltheoryDFTcalculationsshowedexhibitpush-pullbehaviorFurthermorein situEPR/UV-Vis-NIRspectroelectrochemistryalloweddetailedinsightspectroscopicspindistributioncationspeciesAromaticHydrocarbonsContainingPyrrolopyridazineCoreheterocyclescations

Similar Articles

Cited By