Multivariate Air Pollution Prediction Modeling with partial Missingness.

R M Boaz, A B Lawson, J L Pearce
Author Information
  1. R M Boaz: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
  2. A B Lawson: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
  3. J L Pearce: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.

Abstract

Missing observations from air pollution monitoring networks have posed a longstanding problem for health investigators of air pollution. Growing interest in mixtures of air pollutants has further complicated this problem, as many new challenges have arisen that require development of novel methods. The objective of this study is to develop a methodology for multivariate prediction of air pollution. We focus specifically on tackling different forms of missing data, such as: spatial (sparse sites), outcome (pollutants not measured at some sites), and temporal (varieties of interrupted time series). To address these challenges, we develop a novel multivariate fusion framework, which leverages the observed inter-pollutant correlation structure to reduce error in the simultaneous prediction of multiple air pollutants. Our joint fusion model employs predictions from the Environmental Protection Agency's Community Multiscale Air Quality (CMAQ) model along with spatio-temporal error terms. We have implemented our models on both simulated data and a case study in South Carolina for 8 pollutants over a 28-day period in June 2006. We found that our model, which uses a multivariate correlated error in a Bayesian framework, showed promising predictive accuracy particularly for gaseous pollutants.

Keywords

References

  1. Sci Total Environ. 2014 Jul 1;485-486:563-574 [PMID: 24747248]
  2. J Expo Sci Environ Epidemiol. 2013 Nov-Dec;23(6):566-72 [PMID: 23632992]
  3. Environmetrics. 2013 Dec 1;24(8):501-517 [PMID: 24764691]
  4. Environ Sci Technol. 2016 May 17;50(10):5111-8 [PMID: 27074524]
  5. Environ Sci Technol. 2016 Apr 5;50(7):3695-705 [PMID: 26923334]
  6. Stat Methods Med Res. 2012 Oct;21(5):509-29 [PMID: 23035034]
  7. Biometrics. 2012 Sep;68(3):837-48 [PMID: 22211949]
  8. Biostatistics. 2017 Apr 1;18(2):370-385 [PMID: 28025181]
  9. J Expo Sci Environ Epidemiol. 2013 Nov-Dec;23(6):654-9 [PMID: 24084756]
  10. Atmos Environ (1994). 2011 Aug 1;45(26):4412-4420 [PMID: 21808599]
  11. Atmos Environ (1994). 2013 Aug 1;75:383-392 [PMID: 24015108]
  12. Stat Med. 2018 Mar 30;37(7):1134-1148 [PMID: 29205447]
  13. Epidemiology. 2016 Jan;27(1):51-6 [PMID: 26426941]
  14. Ann Appl Stat. 2010 Dec 1;4(4):1942-1975 [PMID: 21853015]
  15. Environ Pollut. 2002;119(1):99-117 [PMID: 12125735]
  16. Stat Methods Med Res. 2016 Aug;25(4):1201-23 [PMID: 27566773]
  17. Biom J. 2016 Sep;58(5):1091-112 [PMID: 26923178]
  18. J Expo Anal Environ Epidemiol. 2004 Sep;14(5):404-15 [PMID: 15361900]
  19. Stat Med. 2010 Jan 15;29(1):142-57 [PMID: 19904772]
  20. Environmetrics. 2018 Feb;29(1): [PMID: 29335667]

Grants

  1. R00 ES023475/NIEHS NIH HHS
  2. TL1 TR001451/NCATS NIH HHS
  3. UL1 TR001450/NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0airpollutantspollutionmultivariatefusionerrormodelproblemchallengesnovelstudydeveloppredictiondatasitesframeworkAirCMAQMissingobservationsmonitoringnetworksposedlongstandinghealthinvestigatorsGrowinginterestmixturescomplicatedmanynewarisenrequiredevelopmentmethodsobjectivemethodologyfocusspecificallytacklingdifferentformsmissingas:spatialsparseoutcomemeasuredtemporalvarietiesinterruptedtimeseriesaddressleveragesobservedinter-pollutantcorrelationstructurereducesimultaneousmultiplejointemployspredictionsEnvironmentalProtectionAgency'sCommunityMultiscaleQualityalongspatio-temporaltermsimplementedmodelssimulatedcaseSouthCarolina828-dayperiodJune2006foundusescorrelatedBayesianshowedpromisingpredictiveaccuracyparticularlygaseousMultivariatePollutionPredictionModelingpartialMissingnessmissingnessspatiotemporal

Similar Articles

Cited By (1)