Path integration in a three-dimensional world: the case of desert ants.

Bernhard Ronacher
Author Information
  1. Bernhard Ronacher: Behavioural Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 18, 10099, Berlin, Germany. Bernhard.ronacher@rz.hu-berlin.de. ORCID

Abstract

Desert ants use path integration to return from foraging excursions on a shortcut way to their nests. Intriguingly, when walking over hills, the ants incorporate the ground distance, the paths' projection to the horizontal plane, into their path integrator. This review discusses how Cataglyphis may solve this computational feat. To infer ground distance, ants must incorporate the inclination of path segments into the assessment of distance. Hair fields between various joints have been eliminated as likely sensors for slope measurement, without affecting slope detection; nor do postural adaptations or changes in gait provide the relevant information. Changes in the sky's polarization pattern due to different head inclinations on slopes were ruled out as cues. Thus, the mechanisms by which ants may measure slopes still await clarification. Remarkably, the precision of slope measurement is roughly constant up to a 45° inclination, but breaks down at 60°. An encounter of sloped path segments during a foraging trip induces a general acceptance of slopes, however, slopes are not associated with specific values of the home vector. All current evidence suggests that Cataglyphis does not compute a vector in 3-D: path integration seems to operate exclusively in the horizontal plane.

Keywords

References

  1. Angelaki DE, Laurens J (2020) The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties. Current Biol 60:136–144
  2. Angelaki DE, Ng J, Abrego AM, Cham HX, Dickman JD, Laurens J (2019) A gravity-based three-dimensional compass in the mouse brain. BioRxiv 2019:570382
  3. Bescond MT, Beugnon G (2005) Vision-independent odometry in the ant Cataglyphis cursor. Naturwissenschaften 92:193–197
  4. Bisetzky AR (1957) Die Tänze der Bienen nach einem Fussweg zum Futterplatz unter besonderer Berücksichtigung von Umwegversuchen. Z Vergl Physiol 40:264–288
  5. Bühlmann C, Graham P, Hansson BS, Knaden M (2014) Desert ants locate food by combining high sensitivity to food odors with extensive cross wind runs. Curr Biol 24:960–964
  6. Chittka L, Williams NM, Rasmussen H, Thomson JD (1999) Navigation without vision: bumblebee orientation in complete darkness. Proc R Soc Lond B 266:45–50
  7. Collett M, Collett TS, Srinivasan MV (2006) Insect navigation: measuring travel distance across ground and through air. Curr Biol 16(20):R887–R890 [PMID: 17055973]
  8. Dacke M, Srinivasan MV (2007) Honeybee navigation: distance estimation in the third dimension. J Exp Biol 210:845–853 [PMID: 17297144]
  9. Dahmen H, Wahl VL, Pfeffer SE, Mallot HA, Wittlinger M (2017) Naturalistic path integration of Cataglyphis desert ants on an air-cushioned lightweight spherical treadmill. J Exp Biol 220:634–644 [PMID: 28202651]
  10. Davis VA, Holbrook RI, Burt de Perera T (2018) The influence of locomotory style on three-dimensional spatial learning. Anim Behav 142:39–47
  11. Esch HE, Burns JE (1995) Honeybees use optic flow to measure the distance of a food source. Naturwissenschaften 82:38–40
  12. Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:180–192 [PMID: 15098724]
  13. Evangelista C, Kraft P, Dacke M, Labhart T, Srinivasan MV (2014) Honey bee navigation: critically examining the role of the polarization compass. Philos Trans R Soc B 369:20130037
  14. Grah G (2008) Die dreidimensionale Orientierung der Wüstenameisen – vereinfachte Repräsentationen von Routen und Räumen: Verhaltensversuche an Cataglyphis fortis. VDM Verlag Dr. Müller, Saarbrücken (ISBN: 978-3-8364-9321-5)
  15. Grah G, Ronacher B (2008) Three-dimensional orientation in desert ants: context-independent memorisation and recall of sloped path segments. J Comp Physiol A 194:517–522
  16. Grah G, Wehner R, Ronacher B (2005) Path integration in a three-dimensional maze: ground distance estimation keeps desert ants Cataghlyphis fortis on course. J Exp Biol 208:4005–4011 [PMID: 16244161]
  17. Grah G, Wehner R, Ronacher B (2007) Desert ants do not acquire and use a three-dimensional global vector. Front Zool 4:12. https://doi.org/10.1186/1742-9994-4-12 [DOI: 10.1186/1742-9994-4-12]
  18. Graham P, Fauria K, Collett TS (2003) The influence of beacon-aiming on the routes of wood ants. J Exp Biol 206:535–541 [PMID: 12502774]
  19. Hayman R, Verriotis MA, Jovalekic A, Fenton AA, Jeffery KJ (2011) Anisotropic encoding of three-dimensional space by place cells and grid cells. Nature Neurosci 14:1182–1188 [PMID: 21822271]
  20. Hayman RMA, Casali G, Wilson JJ, Jeffery KJ (2015) Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding. Front Psychol 6:925. https://doi.org/10.3389/fpsyg.2015.00925 [DOI: 10.3389/fpsyg.2015.00925]
  21. Heinze S, Homberg U (2007) Map-like representation of celestial e-vector orientations in the brain of an insect. Science 315:995–997 [PMID: 17303756]
  22. Heran H (1956) Ein Beitrag zur Frage nach der Wahrnehmungsgrundlage der Entfernungsweisung der Bienen (Apis mellifica L.). Z Vergl Physiol 38:168–218
  23. Heß D, Koch J, Ronacher B (2009) Desert ants do not rely on sky compass information for the perception of inclined path segments. J Exp Biol 212:1528–1534 [PMID: 19411546]
  24. Hill DE (1979) Orientation by jumping spiders of the genus Phidippus (Araneae: Salticidae) during the pursuit of prey. Behav Ecol Sociobiol 5:301–322
  25. Hrncir M, Barth FG (2014) Vibratory communication in stingless bees (Meliponini): the challenge of interpreting the signals. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication, animal signals and communication. Springer, Berlin, pp 349–374
  26. Huber R, Knaden M (2015) Egocentric and geocentric navigation during extremely long foraging paths of desert ants. J Comp Physiol A 201:609–616
  27. Jeffery KJ, Jovalekic A, Verriotis M, Hayman R (2013) Navigating in a three-dimensional world. Behav Brain Sci 36:523–587 [PMID: 24103594]
  28. Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors. Neurobiol Learn Mem 83:1–12 [PMID: 15607683]
  29. Lipp A, Wolf H, Lehmann F-O (2005) Walking on inclines: energetics of locomotion in the ant Camponotus. J Exp Biol 208:707–719 [PMID: 15695763]
  30. Markl H (1962) Borstenfelder an den Gelenken als Schweresinnesorgan bei Ameisen und anderen Hymenopteren. Z Vergl Physiol 45:475–569
  31. Markl H (1964) Geomenotaktische Fehlorientierung bei Formica polyctena Förster. Z Vergl Physiol 48:552–586
  32. Maronde K, Wohlgemuth S, Ronacher B, Wehner R (2003) Ground instead of walking distances determine the direction of the home vector in 3-D path integration of desert ants. Proc Neurobiol Conf Göttingen 29:548–549
  33. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290 [PMID: 16593958]
  34. Müller M, Wehner R (2007) Wind and sky as compass cues in desert ant navigation. Naturwissenschaften 94:589–594 [PMID: 17361400]
  35. Nieh JC, Roubik DW (1998) Potential mechanisms for the communication of height and distance by a stingless bee (Melipona panamica). Behav Ecol Sociobiol 43:387–399
  36. Pfeffer SE, Wittlinger M (2016) Optic flow odometry operates independently of stride integration in carried ants. Science 353:1155–1157 [PMID: 27609893]
  37. Pfeffer SE, Wahl VL, Wittlinger M (2016) How to find home backwards? Locomotion and inter-leg coordination during rearward walking of Cataglyphis fortis desert ants. J Exp Biol 219:2110–2118 [PMID: 27445398]
  38. Porter BS, Schmidt R, Bilkey DK (2018) Hippocampal place cell encoding of sloping terrain. Hippocampus 28:767–782 [PMID: 29781093]
  39. Ronacher B (2008) Path integration as the basic orientation mechanism of desert ants. Myrmecol News 11:53–62
  40. Ronacher B, Wehner R (1995) Desert ants Cataglyphis fortis use self-induced optic flow to measure distances traveled. J Comp Physiol A 177:21–27
  41. Ronacher B, Gallizzi K, Wohlgemuth S, Wehner R (2000) Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J Exp Biol 203:1113–1121 [PMID: 10708632]
  42. Ronacher B, Westwig E, Wehner R (2006) Integrating two-dimensional paths: do desert ants process distance information in the absence of celestial compass cues? J Exp Biol 209:3301–3308 [PMID: 16916966]
  43. Schäfer M, Wehner R (1993) Loading does not affect measurement of walking distance in desert ants Cataglyphis fortis. Verh Dtsch Zool Ges 86(1):270
  44. Seidl T, Wehner R (2008) Walking on inclines: how do desert ants monitor slope and step length. Front Zool 5:8. https://doi.org/10.1186/1742-9994-5-8 [DOI: 10.1186/1742-9994-5-8]
  45. Sommer S, Wehner R (2004) The ant’s estimation of distance travelled: experiments with desert ants Cataglyphis fortis. J Comp Physiol A 190:1–6
  46. Sommer S, Wehner R (2005) Vector navigation in desert ants, Cataglyphis fortis: celestial compass cues are essential for the proper use of distance information. Naturwissenschaften 92:468–471 [PMID: 16163506]
  47. Srinivasan MV (2014) Going with the flow: a brief history of the study of the honeybee’s navigational ‘odometer’. J Comp Physiol A 200:563–573
  48. Srinivasan MV, Zhang SW, Bidwell NJ (1997) Visually mediated odometry in honeybees. J Exp Biol 200:2513–2522 [PMID: 9320443]
  49. Srinivasan MV, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the ‘odometer’. Science 287:851–853 [PMID: 10657298]
  50. Steck K, Wittlinger M, Wolf H (2009) Estimation of homing distances in desert ants, Cataglyphis fortis, remains unaffected by disturbance of walking behaviour. J Exp Biol 212:2893–2901 [PMID: 19717670]
  51. Taube JS, Shinder M (2013) On the nature of three-dimensional encoding in the cognitive map: commentary on Hayman, Verriotis, Jovalekic, Fenton, and Jeffery. Hippocampus 23:14–21 [PMID: 22996337]
  52. Ulanovsky N (2011) Neuroscience: how is three-dimensional space encoded in the brain? Curr Biol 21:R886 [PMID: 22075427]
  53. von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin
  54. Walls ML, Layne JE (2009) Direct evidence for distance measurement via flexible stride integration in the fiddler crab. Curr Biol 19:1–5. https://doi.org/10.1016/j.cub.2008.10.069 [DOI: 10.1016/j.cub.2008.10.069]
  55. Wehner R (1997) The antʼs celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–185
  56. Wehner R (2014) Polarization vision: a discovery story. In: Horvath G (ed) Polarized light and polarization vision in animal sciences, 2nd edn. Springer, Berlin, pp 3–25
  57. Wehner R, Labhart T (2006) Polarization vision. In: Warrant E, Nilsson DE (eds) Invertebrate vision. Cambridge Univ Press, Cambridge, pp 291–348
  58. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci USA 103:12575–12579 [PMID: 16888039]
  59. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behavior. Oxford University Press, Oxford, pp 9–30
  60. Wehner R, Wehner S (1986) Path integration in desert ants. Approaching a long-standing puzzle in insect navigation. Monit Zool Ital 20:309–331
  61. Wehner R, Boyer M, Loertscher F, Sommer F, Menzi U (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79 [PMID: 16401425]
  62. Weihmann T, Blickhan R (2009) Comparing inclined locomotion in a ground-living and a climbing ant species: sagittal plane kinematics. J Comp Physiol A 195:1011–1020
  63. Wintergerst S, Ronacher B (2012) Discrimination of inclined path segments by the desert ant Cataglyphis fortis. J Comp Physiol A 198:363–373
  64. Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967 [PMID: 16809544]
  65. Wittlinger M, Wehner R, Wolf H (2007a) The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol 210:198–207 [PMID: 17210957]
  66. Wittlinger M, Wehner R, Wolf H (2007b) Hair plate mechanoreceptors associated with body segments are not necessary for three-dimensional path integration in desert ants, Cataglyphis fortis. J Exp Biol 210:375–382 [PMID: 17234606]
  67. Wohlgemuth S, Ronacher B, Wehner R (2001) Ant odometry in the third dimension. Nature 411:795–798 [PMID: 11459057]
  68. Wohlgemuth S, Ronacher B, Wehner R (2002) Distance estimation in the third dimension in desert ants. J Comp Physiol A 188:273–281
  69. Wöhrl T, Reinhardt L, Blickhan R (2017) Propulsion in hexapod locomotion: how do desert ants traverse slopes? J Exp Biol 220:1618–1625 [PMID: 28183867]
  70. Wolf H, Wehner R (2000) Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J Exp Biol 203:857–868 [PMID: 10667968]
  71. Wolf H, Wittlinger M, Pfeffer SE (2018) Two distance memories in desert ants—modes of interaction. PLoS ONE 13(10):e0204664. https://doi.org/10.1371/journal.pone.0204664 [DOI: 10.1371/journal.pone.0204664]
  72. Yartsev MM, Ulanovsky N (2013) Representation of three-dimensional space in the hippocampus of flying bats. Science 340:367–372 [PMID: 23599496]

MeSH Term

Animals
Ants
Behavior, Animal
Biomechanical Phenomena
Cues
Feeding Behavior
Locomotion
Memory
Sensory Receptor Cells
Spatial Navigation

Word Cloud

Created with Highcharts 10.0.0antspathintegrationslopesdistanceCataglyphisslopeDesertforagingincorporategroundhorizontalplanemayinclinationsegmentsmeasurementvectorPathusereturnexcursionsshortcutwaynestsIntriguinglywalkinghillspaths'projectionintegratorreviewdiscussessolvecomputationalfeatinfermustassessmentHairfieldsvariousjointseliminatedlikelysensorswithoutaffectingdetectionposturaladaptationschangesgaitproviderelevantinformationChangessky'spolarizationpatternduedifferentheadinclinationsruledcuesThusmechanismsmeasurestillawaitclarificationRemarkablyprecisionroughlyconstant45°breaks60°encounterslopedtripinducesgeneralacceptancehoweverassociatedspecificvalueshomecurrentevidencesuggestscompute3-D:seemsoperateexclusivelythree-dimensionalworld:casedesertDistanceestimationThree-dimensionalnavigation

Similar Articles

Cited By