Model-based Respondent-driven sampling analysis for HIV prevalence in brazilian MSM.

Olivier Robineau, Marcelo F C Gomes, Carl Kendall, Ligia Kerr, André Périssé, Pierre-Yves Boëlle
Author Information
  1. Olivier Robineau: INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique, F75012, Paris, France. olivier.robineau82@gmail.com. ORCID
  2. Marcelo F C Gomes: Fundação Oswaldo Cruz (Fiocruz), Programa de Computação Cientifica, Rio de Janeiro, Brazil.
  3. Carl Kendall: Department of Global Community Health and Behavioral Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.
  4. Ligia Kerr: Department of Community Health, School of Medicine, Federal University of Ceará, Fortaleza, Brazil.
  5. André Périssé: Fundação Oswaldo Cruz (Fiocruz), Escola Nacional de Saúde Pública Sergio Arouca (ENSP), Departamento de Ciências Biológicas, Rio de Janeiro, RJ, Brazil.
  6. Pierre-Yves Boëlle: INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique, F75012, Paris, France.

Abstract

Respondent Driven Sampling study (RDS) is a population sampling method developed to study hard-to-reach populations. A sample is obtained by chain-referral recruitment in a network of contacts within the population of interest. Such self-selected samples are not representative of the target population and require weighing observations to reduce estimation bias. Recently, the Network Model-Assisted (NMA) method was described to compute the required weights. The NMA method relies on modeling the underlying contact network in the population where the RDS was conducted, in agreement with directly observable characteristics of the sample such as the number of contacts, but also with more difficult-to-measure characteristics such as homophily or differential characteristics according to the response variable. Here we investigated the use of the NMA method to estimate HIV prevalence from RDS data when information on homophily is limited. We show that an iterative procedure based on the NMA approach allows unbiased estimations even in the case of strong population homophily and differential activity and limits bias in case of preferential recruitment. We applied the methods to determine HIV prevalence in men having sex with men in Brazilian cities and confirmed a high prevalence of HIV in these populations from 3.8% to 22.1%.

References

  1. White, R. G. et al. Strengthening the Reporting of Observational Studies in Epidemiology for respondent-driven sampling studies: ‘STROBE-RDS’ statement. J Clin Epidemiol, https://doi.org/10.1016/j.jclinepi.2015.04.002 (2015) [DOI: 10.1016/j.jclinepi.2015.04.002]
  2. Heckathorn, D. D. Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations. Soc. Probl. 44, 174–199 (1997). [DOI: 10.2307/3096941]
  3. Gile, K. J., Johnston, L. G. & Salganik, M. J. Diagnostics for Respondent-driven Sampling. J. R. Stat. Society. Ser. A, 178, 241 (2015). [DOI: 10.1111/rssa.12059]
  4. Tomas, A. & Gile, K. J. The effect of differential recruitment, non-response and non-recruitment on estimators for respondent-driven sampling. Electron. J. Statist. 5, 899–934 (2011). [DOI: 10.1214/11-EJS630]
  5. Salganik, M. J. & Heckathorn, D. D. Sampling and Estimation in Hidden Populations Using Respondent-Driven Sampling. Sociological Methodol. 34, 193–239 (2004). [DOI: 10.1111/j.0081-1750.2004.00152.x]
  6. Volz, E. & Heckathorn, D. D. Probability Based Estimation Theory for Respondent Driven Sampling. J. Off. Stat. 24, 79–97 (2008).
  7. Heckathorn, D. D. Respondent-Driven Sampling II: Deriving Valid Population Estimates from Chain-Referral Samples of Hidden Populations. Soc. Probl. 49, 11–34 (2002). [DOI: 10.1525/sp.2002.49.1.11]
  8. Gile, K. J. Improved Inference for Respondent-Driven Sampling Data with Application to HIV Prevalence Estimation. arXiv:1006.4837 [stat] (2010).
  9. Heckathorn, D. D., Semaan, S., Broadhead, R. S. & Hughes, J. J. Extensions of Respondent-Driven Sampling: A New Approach to the Study of Injection Drug Users Aged 18–25. AIDS Behav. 6, 55–67 (2002). [DOI: 10.1023/A]
  10. Heckathorn, D. D. Extensions of Respondent-Driven Sampling: Analyzing Continuous Variables and Controlling for Differential Recruitment. Sociological Methodol. 37, 151–207 (2007). [DOI: 10.1111/j.1467-9531.2007.00188.x]
  11. Gile, K. J. & Handcock, M. S. Network Model-Assisted Inference from Respondent-Driven Sampling Data. J. R. Stat. Soc. Ser. A Stat Soc 178, 619–639 (2015). [DOI: 10.1111/rssa.12091]
  12. Lu, X. Linked Ego Networks: Improving estimate reliability and validity with respondent-driven sampling. Soc. Netw. 35, 669–685 (2013). [DOI: 10.1016/j.socnet.2013.10.001]
  13. Crawford, F. W., Aronow, P. M., Zeng, L. & Li, J. Identification of Homophily and Preferential Recruitment in Respondent-Driven Sampling. Am. J. Epidemiol. 187, 153–160 (2018). [DOI: 10.1093/aje/kwx208]
  14. Baraff, A. J., McCormick, T. H. & Raftery, A. E. Estimating uncertainty in respondent-driven sampling using a tree bootstrap method. Proc. Natl. Acad. Sci. USA 113, 14668–14673 (2016). [DOI: 10.1073/pnas.1617258113]
  15. Handcock, M. S., Fellows, I. E. & Gile, K. J. RDS: Respondent-Driven Sampling. (2016).
  16. Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data. J. Stat. Softw. 24, 1548–7660 (2008). [DOI: 10.18637/jss.v024.i01]
  17. Kendall, C. et al. An empirical comparison of respondent-driven sampling, time location sampling, and snowball sampling for behavioral surveillance in men who have sex with men, Fortaleza, Brazil. AIDS Behav. 12, S97–104 (2008). [DOI: 10.1007/s10461-008-9390-4]
  18. Szwarcwald, C. L., de Souza Júnior, P. R. B., Damacena, G. N., Junior, A. B. & Kendall, C. Analysis of data collected by RDS among sex workers in 10 Brazilian cities, 2009: estimation of the prevalence of HIV, variance, and design effect. J. Acquir. Immune Defic. Syndr. 57(Suppl 3), S129–135 (2011). [DOI: 10.1097/QAI.0b013e31821e9a36]
  19. Toledo, L. et al. Putting respondent-driven sampling on the map: insights from Rio de Janeiro, Brazil. J. Acquir. Immune Defic. Syndr. 57(Suppl 3), S136–143 (2011). [DOI: 10.1097/QAI.0b013e31821e9981]
  20. Sabidó, M. et al. Sexual Violence Against Men Who Have Sex with Men in Brazil: A Respondent-Driven Sampling Survey. AIDS Behav. 19, 1630–1641 (2015). [DOI: 10.1007/s10461-015-1016-z]
  21. Pinheiro Júnior, F. M. L. et al. Risk factors associated with resistance to HIV testing among transwomen in Brazil. AIDS Care 28, 92–97 (2016). [DOI: 10.1080/09540121.2015.1066751]
  22. Grinsztejn, B. et al. Unveiling of HIV dynamics among transgender women: a respondent-driven sampling study in Rio de Janeiro, Brazil. Lancet HIV. 4, E169–E176 (2017). [DOI: 10.1016/S2352-3018(17)30015-2]
  23. Kerr, L. R. F. S. et al. HIV among MSM in a large middle-income country. AIDS 27, 427–435 (2013). [DOI: 10.1097/QAD.0b013e32835ad504]
  24. Barash, V. D., Cameron, C. J., Spiller, M. W. & Heckathorn, D. D. Respondent-Driven Sampling–Testing Assumptions: Sampling with Replacement. J. Off. Stat. 32, 29–73 (2016). [DOI: 10.1515/jos-2016-0002]
  25. Amirkhanian, Y. A. Social networks, sexual networks and HIV risk in men who have sex with men. Curr. HIV/AIDS Rep. 11, 81–92 (2014). [DOI: 10.1007/s11904-013-0194-4]
  26. Klovdahl, A. S. et al. Social networks and infectious disease: the Colorado Springs Study. Soc. Sci. Med. 38, 79–88 (1994). [DOI: 10.1016/0277-9536(94)90302-6]
  27. Magno, L. et al. Factors associated with self-reported discrimination against men who have sex with men in Brazil. Rev. Saude Publica 51, 102 (2017). [DOI: 10.11606/S1518-8787.2017051000016]
  28. Chard, A. N., Finneran, C., Sullivan, P. S. & Stephenson, R. Experiences of homophobia among gay and bisexual men: results from a cross-sectional study in seven countries. Cult. Health Sex. 17, 1174–1189 (2015). [DOI: 10.1080/13691058.2015.1042917]
  29. Rocha, L. E. C., Thorson, A. E., Lambiotte, R. & Liljeros, F. Respondent-driven sampling bias induced by clustering and community structure in social networks. arXiv:1503.05826 [physics, stat] (2015).
  30. Wejnert, C., Pham, H., Krishna, N., Le, B. & DiNenno, E. Estimating design effect and calculating sample size for respondent-driven sampling studies of injection drug users in the United States. AIDS Behav. 16, 797–806 (2012). [DOI: 10.1007/s10461-012-0147-8]
  31. Johnston, L. G., Malekinejad, M., Kendall, C., Iuppa, I. M. & Rutherford, G. W. Implementation challenges to using respondent-driven sampling methodology for HIV biological and behavioral surveillance: field experiences in international settings. AIDS Behav. 12, S131–141 (2008). [DOI: 10.1007/s10461-008-9413-1]
  32. Kerr, L. et al. HIV prevalence among men who have sex with men in Brazil: results of the 2nd national survey using respondent-driven sampling. Med. 97, S9–S15 (2018). [DOI: 10.1097/MD.0000000000010573]
  33. Guimarães, M. D. C. et al. Comparing HIV risk-related behaviors between 2 RDS national samples of MSM in Brazil, 2009 and 2016. Med. 97, S62–S68 (2018). [DOI: 10.1097/MD.0000000000009079]

MeSH Term

Brazil
Computer Simulation
HIV Infections
Homosexuality, Male
Humans
Male
Models, Biological
Population Density
Prevalence
Surveys and Questionnaires

Word Cloud

Created with Highcharts 10.0.0populationmethodNMAHIVprevalenceRDScharacteristicshomophilystudysamplingpopulationssamplerecruitmentnetworkcontactsbiasdifferentialcasemenRespondentDrivenSamplingdevelopedhard-to-reachobtainedchain-referralwithininterestself-selectedsamplesrepresentativetargetrequireweighingobservationsreduceestimationRecentlyNetworkModel-Assisteddescribedcomputerequiredweightsreliesmodelingunderlyingcontactconductedagreementdirectlyobservablenumberalsodifficult-to-measureaccordingresponsevariableinvestigateduseestimatedatainformationlimitedshowiterativeprocedurebasedapproachallowsunbiasedestimationsevenstrongactivitylimitspreferentialappliedmethodsdeterminesexBraziliancitiesconfirmedhigh38%221%Model-basedRespondent-drivenanalysisbrazilianMSM

Similar Articles

Cited By