A lamin-like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice.

Jun Yang, Yu Chang, Yonghua Qin, Dijun Chen, Tao Zhu, Kaiqing Peng, Huaijun Wang, Ning Tang, Xiaokai Li, Yusen Wang, Yinmeng Liu, Xianghua Li, Weibo Xie, Lizhong Xiong
Author Information
  1. Jun Yang: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
  2. Yu Chang: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. ORCID
  3. Yonghua Qin: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
  4. Dijun Chen: Department for Plant Cell and Molecular Biology (AG Kaufmann) Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. ORCID
  5. Tao Zhu: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. ORCID
  6. Kaiqing Peng: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
  7. Huaijun Wang: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
  8. Ning Tang: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. ORCID
  9. Xiaokai Li: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. ORCID
  10. Yusen Wang: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
  11. Yinmeng Liu: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
  12. Xianghua Li: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. ORCID
  13. Weibo Xie: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. ORCID
  14. Lizhong Xiong: National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. ORCID

Abstract

Lamin proteins in animals are implicated in important nuclear functions, including chromatin organization, signalling transduction, gene regulation and cell differentiation. Nuclear Matrix Constituent Proteins (NMCPs) are lamin analogues in plants, but their regulatory functions remain largely unknown. We report that OsNMCP1 is localized at the nuclear periphery in rice (Oryza sativa) and induced by drought stress. OsNMCP1 overexpression resulted in a deeper and thicker root system, and enhanced drought resistance compared to the wild-type control. An assay for transposase accessible chromatin with sequencing (ATAC-seq) analysis revealed that OsNMCP1-overexpression altered chromatin accessibility in hundreds of genes related to drought resistance and root growth, including OsNAC10, OsERF48, OsSGL, SNAC1 and OsbZIP23. OsNMCP1 can interact with SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodelling complex subunit OsSWI3C. The reported drought resistance or root growth-related genes that were positively regulated by OsNMCP1 were negatively regulated by OsSWI3C under drought stress conditions, and OsSWI3C overexpression led to decreased drought resistance. We propose that the interaction between OsNMCP1 and OsSWI3C under drought stress conditions may lead to the release of OsSWI3C from the SWI/SNF gene silencing complex, thus changing chromatin accessibility in the genes related to root growth and drought resistance.

Keywords

References

  1. Abrams E, Neigeborn L, Carlson M. 1986. Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Molecular and Cellular Biology 6: 3643-3651.
  2. Archacki R, Sarnowski TJ, Halibart-Puzio J, Brzeska K, Buszewicz D, Prymakowska-Bosak M, Koncz C, Jerzmanowski A. 2009. Genetic analysis of functional redundancy of BRM ATPase and ATSWI3C subunits of Arabidopsis SWI/SNF chromatin remodelling complexes. Planta 229: 1281-1292.
  3. Archacki R, Yatusevich R, Buszewicz D, Krzyczmonik K, Patryn J, Iwanicka-Nowicka R, Biecek P, Wilczynski B, Koblowska M, Jerzmanowski A et al. 2017. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Research 45: 3116-3129.
  4. Bi XL, Cheng YJ, Hu B, Ma XL, Wu R, Wang JW, Liu C. 2017. Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Research 27: 1162-1173.
  5. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods 10: 1213-1218.
  6. Chen SF, Zhou YQ, Chen YR, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: 884-890.
  7. Choi J, Jeon S, Choi S, Park K, Seong RH. 2015. The SWI/SNF chromatin remodeling complex regulates germinal center formation by repressing Blimp-1 expression. Proceedings of the National Academy of Sciences, USA 112: E718-E727.
  8. Ciska M, Masuda K, de la Espina SMD. 2013. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa. Journal of Experimental Botany 64: 1553-1564.
  9. Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annual Review of Biochemistry 78: 273-304.
  10. Cui Y, Wang M, Zhou H, Li M, Huang L, Yin X, Zhao G, Lin F, Xia X, Xu G. 2016. OsSGL, a novel DUF1645 domain-containing protein, confers enhanced drought tolerance in transgenic rice and Arabidopsis. Frontiers in Plant Science 7: 2001.
  11. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S. 2008. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322: 1380-1384.
  12. Dittmer TA, Misteli T. 2011. The lamin protein family. Genome Biology 12: 222.
  13. Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ. 2007. LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19: 2793-2803.
  14. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15-21.
  15. Dong Q, Li N, Li X, Yuan Z, Xie D, Wang X, Li J, Yu Y, Wang J, Ding B et al. 2018. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. The Plant Journal 94: 1141-1156.
  16. Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK. 2006. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes & Development 20: 486-500.
  17. Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R. 2011. Root biology and genetic improvement for drought avoidance in rice. Field Crops Research 122: 1-13.
  18. Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. 2003. The nuclear lamina and its functions in the nucleus. International Review of Cytology - A Survey of Cell Biology 226: 1-62.
  19. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. 2005. The nuclear lamina comes of age. Nature Reviews Molecular Cell Biology 6: 21-31.
  20. Guo TT, Mao XG, Zhang H, Zhang Y, Fu MD, Sun ZF, Kuai P, Lou YG, Fang YD. 2017. Lamin-like proteins negatively regulate plant immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabidopsis thaliana. Molecular Plant 10: 1334-1348.
  21. Han SK, Sang Y, Rodrigues A, Wu MF, Rodriguez PL, Wagner D. 2012. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24: 4892-4906.
  22. Han SK, Wagner D. 2014. Role of chromatin in water stress responses in plants. Journal of Experimental Botany 65: 2785-2799.
  23. Han SK, Wu MF, Cui SJ, Wagner D. 2015. Roles and activities of chromatin remodeling ATPases in plants. The Plant Journal 83: 62-77.
  24. Hu B, Wang N, Bi XL, Karaaslan ES, Weber AL, Zhu WS, Berendzen KW, Liu C. 2019. Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biology 20: 87.
  25. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences, USA 103: 12987-12992.
  26. Hu HH, Xiong LZ. 2014. Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology 65: 715-741.
  27. Inoue S. 1997. The role of microtubule assembly dynamics in mitotic force generation and functional organization of living cells. Journal of Structural Biology 118: 87-93.
  28. Jain M, Tyagi AK, Khurana JP. 2006. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88: 360-371.
  29. Jegu T, Domenichini S, Blein T, Ariel F, Christ A, Kim SK, Crespi M, Boutet-Mercey S, Mouille G, Bourge M et al. 2015. A SWI/SNF chromatin remodelling protein controls cytokinin production through the regulation of chromatin architecture. PLoS ONE 10: e0138276.
  30. Jegu T, Latrasse D, Delarue M, Hirt H, Domenichini S, Ariel F, Crespi M, Bergounioux C, Raynaud C, Benhamed M. 2014. The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. Plant Cell 26: 538-551.
  31. Jegu T, Veluchamy A, Ramirez-Prado JS, Rizzi-Paillet C, Perez M, Lhomme A, Latrasse D, Coleno E, Vicaire S, Legras S et al. 2017. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biology 18: 114.
  32. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK. 2010. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology 153: 185-197.
  33. Jeong JS, Kim YS, Redillas MCFR, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK. 2013. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal 11: 101-114.
  34. Jerzmanowski A. 2007. SWI/SNF chromatin remodeling and linker histones in plants. Biochimica Et Biophysica Acta-Gene Structure And Expression 1769: 330-345.
  35. Jing YQ, Sun H, Yuan W, Wang Y, Li Q, Liu YN, Li Y, Qian WQ. 2016. SUVH2 and SUVH9 couple two essential steps for transcriptional gene silencing in Arabidopsis. Molecular Plant 9: 1156-1167.
  36. Jung H, Chung PJ, Park SH, Redillas MCFR, Kim YS, Suh JW, Kim JK. 2017. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnology Journal 15: 1295-1308.
  37. Kasten MM, Clapier CR, Cairns BR. 2011. SnapShot: chromatin remodeling: SWI/SNF. Cell 144: 310-311.
  38. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu JZ, Zhou SG et al. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6: 4.
  39. Lafitte HR, Guan YS, Yan S, Li ZK. 2007. Whole plant responses, key processes, and adaptation to drought stress: the case of rice. Journal of Experimental Botany 58: 169-175.
  40. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357-359.
  41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079.
  42. Li JT, Zhao Y, Chu HW, Wang LK, Fu YR, Liu P, Upadhyaya N, Chen CL, Mou TM, Feng YQ et al. 2015. SHOEBOX modulates root meristem size in rice through dose-dependent effects of gibberellins on cell elongation and proliferation. PLoS Genetics 11: e1005464.
  43. Li XK, Guo ZL, Lv Y, Cen X, Ding XP, Wu H, Li XH, Huang JP, Xiong LZ. 2017. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genetics 13: e1006889.
  44. Lin YJ, Zhang QF. 2005. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports 23: 540-547.
  45. Liu C, Cheng YJ, Wang JW, Weigel D. 2017. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nature Plants 3: 742-748.
  46. Liu HB, Li XH, Xiao JH, Wang SP. 2012. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods 8: 2.
  47. Lund E, Oldenburg AR, Delbarre E, Freberg CT, Duband-Goulet I, Eskeland R, Buendia B, Collas P. 2013. Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Research 23: 1580-1589.
  48. Markiewicz E, Ledran M, Hutchison CJ. 2005. Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro. Journal of Cell Science 118: 409-420.
  49. Masuda K, Takahashi S, Nomura K, Arimoto M, Inoue M. 1993. Residual structure and constituent proteins of the peripheral framework of the cell-nucleus in somatic embryos from Daucus carota L. Planta 191: 532-540.
  50. Masuda K, Xu ZJ, Takahashi S, Ito A, Ono M, Nomura K, Inoue M. 1997. Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical domain. Experimental Cell Research 232: 173-181.
  51. Mele M, Rinn JL. 2016. "Cat's Cradling" the 3D genome by the act of LncRNA transcription. Molecular Cell 62: 657-664.
  52. Mikulski P, Hohenstatt ML, Farrona S, Smaczniak C, Stahl Y, Kalyanikrishna, Kaufmann K, Angenent G, Schubert D. 2019. The chromatin-associated protein PWO1 interacts with plant nuclear lamin-like components to regulate nuclear size. Plant Cell 31: 1141-1154.
  53. Mlynarova L, Nap JP, Bisseling T. 2007. The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. The Plant Journal 51: 874-885.
  54. Ning J, Li XH, Hicks LM, Xiong LZ. 2010. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiology 152: 876-890.
  55. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33: 290-295.
  56. Potter KC, Wang J, Schaller GE, Kieber JJ. 2018. Cytokinin modulates context-dependent chromatin accessibility through the type-B response regulators. Nature Plants 4: 1102-1111.
  57. Qu YY, Mu P, Zhang HL, Chen CY, Gao YM, Tian YX, Wen F, Li ZC. 2008. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133: 187-200.
  58. Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK. 2012. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnology Journal 10: 792-805.
  59. Ren H, Gray WM. 2015. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant 8: 1153-1164.
  60. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nature Biotechnology 29: 24-26.
  61. Rodriguez-Granados NY, Ramirez-Prado JS, Veluchamy A, Latrasse D, Raynaud C, Crespi M, Ariel F, Benhamed M. 2016. Put your 3D glasses on: plant chromatin is on show. Journal of Experimental Botany 67: 3205-3221.
  62. Roudier F, Schindelman G, DeSalle R, Benfey PN. 2002. The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiology 130: 538-548.
  63. Sarnowska E, Gratkowska DM, Sacharowski SP, Cwiek P, Tohge T, Fernie AR, Siedlecki JA, Koncz C, Sarnowski TJ. 2016. The role of SWI/SNF chromatin remodeling complexes in hormone crosstalk. Trends in Plant Science 21: 594-608.
  64. Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR, Jikumaru Y, Kamiya Y, Franzen R, Schmelzer E et al. 2013. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. Plant Physiology 163: 305-317.
  65. Sarnowski TJ, Swiezewski S, Pawlikowska K, Kaczanowski S, Jerzmanowski A. 2002. AtSWI3B, an Arabidopsis homolog of SWI3, a core subunit of yeast Swi/Snf chromatin remodeling complex, interacts with FCA, a regulator of flowering time. Nucleic Acids Research 30: 3412-3421.
  66. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN. 2001. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes & Development 15: 1115-1127.
  67. Shen JQ, Liu JH, Xie KB, Xing F, Xiong F, Xiao JH, Li XH, Xiong LZ. 2017. Translational repression by a miniature inverted-repeat transposable element in the 3′ untranslated region. Nature Communications 8: 14651.
  68. Stark R, Brown G. 2011. DiffBind: differential binding analysis of ChIP-Seq peak data. Bioconductor. [WWW document] URL http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf.
  69. Stuurman N, Heins S, Aebi U. 1998. Nuclear lamins: their structure, assembly, and interactions. Journal of Structural Biology 122: 42-66.
  70. Tang N, Ma SQ, Zong W, Yang N, Lv Y, Yan C, Guo ZL, Li J, Li X, Xiang Y et al. 2016. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell 28: 2161-2177.
  71. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N et al. 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics 45: 1097-1102.
  72. Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J. 2008. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. The Plant Journal 56: 505-516.
  73. Walter W, Sanchez-Cabo F, Ricote M. 2015. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31: 2912-2914.
  74. Wang HY, Dittmer TA, Richards EJ. 2013. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biology 13: 200.
  75. Xia L, Zou D, Sang J, Xu X, Yin H, Li M, Wu S, Hu S, Hao L, Zhang Z. 2017. Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice. Journal of Genetics and Genomics 44: 235-241.
  76. Xiang Y, Tang N, Du H, Ye H, Xiong L. 2008. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology 148: 1938-1952.
  77. Xiao BZ, Huang YM, Tang N, Xiong LZ. 2007. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics 115: 35-46.
  78. Xie KB, Minkenberg B, Yang YN. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences, USA 112: 3570-3575.
  79. Yang SG, Li CL, Zhao LM, Gao SJ, Lu JX, Zhao ML, Chen CY, Liu XC, Luo M, Cui YH et al. 2015. The Arabidopsis SWI2/SNF2 chromatin remodeling ATPase BRAHMA targets directly to PINs and is required for root stem cell niche maintenance. Plant Cell 27: 1670-1680.
  80. Yao W, Li GW, Yu YM, Ouyang YD. 2017. funRiceGenes dataset for comprehensive understanding and application of rice functional genes. Gigascience 7: 1-9.
  81. Yen KY, Vinayachandran V, Batta K, Koerber RT, Pugh BF. 2012. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149: 1461-1473.
  82. Yu GC, Wang LG, He QY. 2015. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31: 2382-2383.
  83. Yue B, Xue WY, Xiong LZ, Yu XQ, Luo LJ, Cui KH, Jin DM, Xing YZ, Zhang QF. 2006. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance. Genetics 172: 1213-1228.
  84. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology 9: R137.
  85. Zhao L, Wang SQ, Cao ZL, Ouyang WZ, Zhang Q, Xie L, Zheng RQ, Guo MR, Ma M, Hu Z et al. 2019. Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation. Nature Communications 10: 3640.
  86. Zhao WM, Guan CM, Feng J, Liang Y, Zhan N, Zuo JR, Ren B. 2016. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein. Journal of Integrative Plant Biology 58: 669-678.
  87. Zhou SL, Jiang W, Zhao Y, Zhou DX. 2019. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nature Plants 5: 795-800.
  88. Zhou X, Maricque B, Xie MC, Li DF, Sundaram V, Martin EA, Koebbe BC, Nielsen C, Hirst M, Farnham P et al. 2011. The human epigenome browser at Washington University. Nature Methods 8: 989-990.
  89. Zhu YY, Rowley MJ, Bohmdorfer G, Wierzbicki AT. 2013. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Molecular Cell 49: 298-309.
  90. Zong W, Tang N, Yang J, Peng L, Ma SQ, Xu Y, Li GL, Xiong LZ. 2016. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiology 171: 2810-2825.

MeSH Term

Chromatin
Droughts
Gene Expression Regulation, Plant
Lamins
Oryza
Plant Proteins
Plants, Genetically Modified
Stress, Physiological

Chemicals

Chromatin
Lamins
Plant Proteins