Endothelialization of arterial vascular grafts by circulating monocytes.
Randall J Smith, Bita Nasiri, Julien Kann, Donald Yergeau, Jonathan E Bard, Daniel D Swartz, Stelios T Andreadis
Author Information
Randall J Smith: Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY, 14260, USA.
Bita Nasiri: Department of Chemical and Biological, University at Buffalo, State University of New York, Amherst, NY, 14260, USA.
Julien Kann: Genomics and Bioinformatics Core, University at Buffalo, State University of New York, Amherst, NY, 14260, USA.
Donald Yergeau: Genomics and Bioinformatics Core, University at Buffalo, State University of New York, Amherst, NY, 14260, USA. ORCID
Jonathan E Bard: Genomics and Bioinformatics Core, University at Buffalo, State University of New York, Amherst, NY, 14260, USA. ORCID
Daniel D Swartz: Angiograft LLC, Amherst, NY, 14260, USA.
Stelios T Andreadis: Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY, 14260, USA. sandread@buffalo.edu.
Recently our group demonstrated that acellular tissue engineered vessels (A-TEVs) comprised of small intestinal submucosa (SIS) immobilized with heparin and vascular endothelial growth factor (VEGF) could be implanted into the arterial system of a pre-clinical ovine animal model, where they endothelialized within one month and remained patent. Here we report that immobilized VEGF captures blood circulating monocytes (MC) with high specificity under a range of shear stresses. Adherent MC differentiate into a mixed endothelial (EC) and macrophage (Mφ) phenotype and further develop into mature EC that align in the direction of flow and produce nitric oxide under high shear stress. In-vivo, newly recruited cells on the vascular lumen express MC markers and at later times they co-express MC and EC-specific proteins and maintain graft patency. This novel finding indicates that the highly prevalent circulating MC contribute directly to the endothelialization of acellular vascular grafts under the right chemical and biomechanical cues.
References
Rambol, M. H., Hisdal, J., Sundhagen, J. O., Brinchmann, J. E. & Rosales, A. Recellularization of decellularized venous grafts using peripheral blood: a critical evaluation. EBioMedicine 32, 215–222 (2018).
[DOI: 10.1016/j.ebiom.2018.05.012]
Ma, X. et al. Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells. J. Cardiothorac. Surg. 12, 101 (2017).
[DOI: 10.1186/s13019-017-0661-x]
Xu, S. et al. Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. Biomed. Eng. Online 16, 55 (2017).
[DOI: 10.1186/s12938-017-0344-9]
Dahan, N. et al. Dynamic autologous reendothelialization of small-caliber arterial extracellular matrix: a preclinical large animal study. Tissue Eng. Part A 23, 69–79 (2017).
[DOI: 10.1089/ten.tea.2016.0126]
Kristofik, N. J. et al. Improving in vivo outcomes of decellularized vascular grafts via incorporation of a novel extracellular matrix. Biomaterials 141, 63–73 (2017).
[DOI: 10.1016/j.biomaterials.2017.06.025]
Aubin, H. et al. Customized interface biofunctionalization of decellularized extracellular matrix: toward enhanced endothelialization. Tissue Eng. Part C. Methods 22, 496–508 (2016).
[DOI: 10.1089/ten.tec.2015.0556]
Song, L., Duan, P. & Zhou, Q. Preparation and characterization of a de-cellularized rabbit aorta as a promising scaffold in vascular tissue engineering. Cell Mol. Biol. 62, 31–38 (2016).
[DOI: 10.14715/cmb/2016.62.13.6]
Dimitrievska, S. et al. Click-coated, heparinized, decellularized vascular grafts. Acta Biomater. 13, 177–187 (2015).
[DOI: 10.1016/j.actbio.2014.11.015]
Syedain, Z. H., Meier, L. A., Lahti, M. T., Johnson, S. L. & Tranquillo, R. T. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng. Part A 20, 1726–1734 (2014).
[DOI: 10.1089/ten.tea.2013.0550]
Dahan, N. et al. Porcine small diameter arterial extracellular matrix supports endothelium formation and media remodeling forming a promising vascular engineered biograft. Tissue Eng. Part A 18, 411–422 (2012).
[DOI: 10.1089/ten.tea.2011.0173]
Quint, C., Arief, M., Muto, A., Dardik, A. & Niklason, L. E. Allogeneic human tissue-engineered blood vessel. J. Vasc. Surg. 55, 790–798 (2012).
[DOI: 10.1016/j.jvs.2011.07.098]
Quint, C. et al. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl Acad. Sci. USA 108, 9214–9219 (2011).
[DOI: 10.1073/pnas.1019506108]
Zhao, Y. et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 31, 296–307 (2010).
[DOI: 10.1016/j.biomaterials.2009.09.049]
Lawson, J. H. et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 387, 2026–2034 (2016).
[DOI: 10.1016/S0140-6736(16)00557-2]
Hibino, N. et al. Late-term results of tissue-engineered vascular grafts in humans. J. Thorac. Cardiovasc. Surg. 139, 431–436 (2010).
[DOI: 10.1016/j.jtcvs.2009.09.057]
Onwuka, E. et al. The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft. Regen. Med. 12, 249–261 (2017).
[DOI: 10.2217/rme-2016-0141]
Putzu, M. et al. Elastin-like-recombinamers multilayered nanofibrous scaffolds for cardiovascular applications. Biofabrication 8, 045009 (2016).
[DOI: 10.1088/1758-5090/8/4/045009]
Gabriel, M., Niederer, K. & Frey, H. Wet chemistry and peptide immobilization on polytetrafluoroethylene for improved cell-adhesion. J. Vis. Exp. https://doi.org/10.3791/54272 (2016).
Gao, Y. et al. Pilot mouse study of 1 mm inner diameter (ID) vascular graft using electrospun poly(ester urea) nanofibers. Adv. Healthc. Mater. 5, 2427–2436 (2016).
[DOI: 10.1002/adhm.201600400]
Khosravi, R. et al. Long-term functional efficacy of a novel electrospun poly(glycerol sebacate)-based arterial graft in mice. Ann. Biomed. Eng. 44, 2402–2416 (2016).
[DOI: 10.1007/s10439-015-1545-7]
Shi, C., Li, Q., Zhang, W., Feng, Y. & Ren, X. REDV peptide conjugated nanoparticles/pZNF580 complexes for actively targeting human vascular endothelial cells. ACS Appl Mater. Interfaces 7, 20389–20399 (2015).
[DOI: 10.1021/acsami.5b06286]
Wu, W., Allen, R. A. & Wang, Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat. Med. 18, 1148–1153 (2012).
[DOI: 10.1038/nm.2821]
Malm, C. J. et al. Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model. Scand. Cardiovasc. J. 46, 57–62 (2012).
[DOI: 10.3109/14017431.2011.623788]
Xiang, P., Li, M., Zhang, C. Y., Chen, D. L. & Zhou, Z. H. Cytocompatibility of electrospun nano fi ber tubular scaffolds for small diameter tissue engineering blood vessels. Int. J. Biol. Macromol. 49, 281–288 (2011).
[DOI: 10.1016/j.ijbiomac.2011.05.004]
Ombrellaro, M. P., Stevens, S. L., Kerstetter, K., Freeman, M. B. & Goldman, M. H. Healing characteristics of intraarterial stented grafts: effect of intraluminal position on prosthetic graft healing. Surgery 120, 60–70 (1996).
[DOI: 10.1016/S0039-6060(96)80242-X]
Mahara, A. et al. Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. Biomaterials 58, 54–62 (2015).
[DOI: 10.1016/j.biomaterials.2015.04.031]
De Visscher, G., Mesure, L., Meuris, B., Ivanova, A. & Flameng, W. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1alpha. Acta Biomater. 8, 1330–1338 (2012).
[DOI: 10.1016/j.actbio.2011.09.016]
Lee, K. W., Johnson, N. R., Gao, J. & Wang, Y. Human progenitor cell recruitment via SDF-1alpha coacervate-laden PGS vascular grafts. Biomaterials 34, 9877–9885 (2013).
[DOI: 10.1016/j.biomaterials.2013.08.082]
Smith, R. J. Jr., Yi, T., Nasiri, B., Breuer, C. K. & Andreadis, S. T. Implantation of VEGF-functionalized cell-free vascular grafts: regenerative and immunological response. FASEB J. 33, 5089–5100 (2019).
[DOI: 10.1096/fj.201801856R]
Koobatian, M. T. et al. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials 76, 344–358 (2016).
[DOI: 10.1016/j.biomaterials.2015.10.020]
Smith, R. J. Jr., Koobatian, M. T., Shahini, A., Swartz, D. D. & Andreadis, S. T. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor. Biomaterials 51, 303–312 (2015).
[DOI: 10.1016/j.biomaterials.2015.02.025]
Koobatian, M. T., Koenigsknecht, C., Row, S., Andreadis, S. & Swartz, D. Surgical technique for the implantation of tissue engineered vascular grafts and subsequent in vivo monitoring. J. Vis. Exp. https://doi.org/10.3791/52354 (2015).
Birdsey, G. M. et al. The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/beta-catenin signaling. Dev. Cell 32, 82–96 (2015).
[DOI: 10.1016/j.devcel.2014.11.016]
Iqbal, A. J. et al. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 124, e33–e44 (2014).
[DOI: 10.1182/blood-2014-04-568691]
Lang, R., Rutschman, R. L., Greaves, D. R. & Murray, P. J. Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter. J. Immunol. 168, 3402–3411 (2002).
[DOI: 10.4049/jimmunol.168.7.3402]
Alimperti, S. et al. A novel lentivirus for quantitative assessment of gene knockdown in stem cell differentiation. Gene Ther. 19, 1123–1132 (2012).
[DOI: 10.1038/gt.2011.208]
Tian, J. & Andreadis, S. T. Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector. Gene Ther. 16, 874–884 (2009).
[DOI: 10.1038/gt.2009.46]
Shafiq, M. et al. In situ blood vessel regeneration using SP (Substance P) and SDF (Stromal Cell-Derived Factor)-1alpha peptide eluting vascular grafts. Arterioscler. Thromb. Vasc. Biol. 38, e117–e134 (2018).
[DOI: 10.1161/ATVBAHA.118.310934]
Plouffe, B. D., Radisic, M. & Murthy, S. K. Microfluidic depletion of endothelial cells, smooth muscle cells, and fibroblasts from heterogeneous suspensions. Lab Chip 8, 462–472 (2008).
[DOI: 10.1039/b715707j]
Markway, B. D. et al. Capture of flowing endothelial cells using surface-immobilized anti-kinase insert domain receptor antibody. Tissue Eng. Part C. Methods 14, 97–105 (2008).
[DOI: 10.1089/ten.tec.2007.0300]
Matsuda, T. et al. Surface design for in situ capture of endothelial progenitor cells: VEGF-bound surface architecture and behaviors of cultured mononuclear cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 101, 50–60 (2013).
[DOI: 10.1002/jbm.b.32812]
Skarja, G. A., Brash, J. L., Bishop, P. & Woodhouse, K. A. Protein and platelet interactions with thermally denatured fibrinogen and cross-linked fibrin coated surfaces. Biomaterials 19, 2129–2138 (1998).
[DOI: 10.1016/S0142-9612(98)00045-3]
Grinnell, F. Fibronectin and wound healing. J. Cell. Biochem. 26, 107–116 (1984).
[DOI: 10.1002/jcb.240260206]
Martino, M. M. & Hubbell, J. A. The 12th-14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 24, 4711–4721 (2010).
[PMID: 20671107]
Sopova, K., Tatsidou, P. & Stellos, K. Platelets and platelet interaction with progenitor cells in vascular homeostasis and inflammation. Curr. Vasc. Pharmacol. 10, 555–562 (2012).
[DOI: 10.2174/157016112801784486]
Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).
[DOI: 10.1038/nrm1911]
Chopra, H., Hung, M. K., Kwong, D. L., Zhang, C. F. & Pow, E. H. N. Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Int. 2018, 9847015 (2018).
[DOI: 10.1155/2018/9847015]
Bourghardt Peebo, B., Fagerholm, P., Traneus-Rockert, C. & Lagali, N. Time-lapse in vivo imaging of corneal angiogenesis: the role of inflammatory cells in capillary sprouting. Invest. Ophthalmol. Vis. Sci. 52, 3060–3068 (2011).
[DOI: 10.1167/iovs.10-6101]
Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6, 1670–1690 (2014).
[DOI: 10.3390/cancers6031670]
Hibino, N. et al. The innate immune system contributes to tissue-engineered vascular graft performance. FASEB J. 29, 2431–2438 (2015).
[DOI: 10.1096/fj.14-268334]
Roh, J. D. et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc. Natl Acad. Sci. USA 107, 4669–4674 (2010).
[DOI: 10.1073/pnas.0911465107]
Fujiyama, S. et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circulation Res. 93, 980–989 (2003).
[DOI: 10.1161/01.RES.0000099245.08637.CE]
Row, S., Swartz, D. D. & Andreadis, S. T. Animal models of cardiovascular disease as test beds of bioengineered vascular grafts. Drug Discov. Today Dis. Models 24, 37–45 (2017).
[DOI: 10.1016/j.ddmod.2018.05.001]
Swartz, D. D. & Andreadis, S. T. Animal models for vascular tissue-engineering. Curr. Opin. Biotechnol. 24, 916–925 (2013).
[DOI: 10.1016/j.copbio.2013.05.005]
Tara, S. et al. Vessel bioengineering. Circ. J. 78, 12–19 (2014).
[DOI: 10.1253/circj.CJ-13-1440]
Seta, N. & Kuwana, M. Human circulating monocytes as multipotential progenitors. Keio J. Med. 56, 41–47 (2007).
[DOI: 10.2302/kjm.56.41]
Kuwana, M. et al. Endothelial differentiation potential of human monocyte-derived multipotential cells. Stem Cells 24, 2733–2743 (2006).
[DOI: 10.1634/stemcells.2006-0026]
Zhang, R., Yang, H., Li, M., Yao, Q. & Chen, C. Acceleration of endothelial-like cell differentiation from CD14+ monocytes in vitro. Exp. Hematol. 33, 1554–1563 (2005).
[DOI: 10.1016/j.exphem.2005.08.011]
Rehman, J., Li, J., Orschell, C. M. & March, K. L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).
[DOI: 10.1161/01.CIR.0000058702.69484.A0]
Schmeisser, A. et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel® under angiogenic conditions. Cardiovasc. Res. 49, 671–680 (2001).
Fernandez Pujol, B. et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65, 287–300 (2000).
[DOI: 10.1046/j.1432-0436.2000.6550287.x]
Rungsiwiwut, R. et al. The ROCK inhibitor Y-26732 enhances the survival and proliferation of human embryonic stem cell-derived neural progenitor cells upon dissociation. Cells Tissues Organs 198, 127–138 (2013).
[DOI: 10.1159/000354031]
Kang, J. et al. Activated platelet supernatant can augment the angiogenic potential of human peripheral blood stem cells mobilized from bone marrow by G-CSF. J. Mol. Cell. Cardiol. 75, 64–75 (2014).
[DOI: 10.1016/j.yjmcc.2014.06.019]
Li, R. et al. Shear stress-activated Wnt-angiopoietin-2 signaling recapitulates vascular repair in zebrafish embryos. Arterioscler. Thromb. Vasc. Biol. 34, 2268–2275 (2014).
[DOI: 10.1161/ATVBAHA.114.303345]
Long, Y. & Huang, H. On signaling pathways: hematopoietic stem cell specification from hemogenic endothelium. Sci. China Life Sci. 58, 1256–1261 (2015).
[DOI: 10.1007/s11427-015-4976-3]
Cao, N. & Yao, Z. X. The hemangioblast: from concept to authentication. Anat. Rec. 294, 580–588 (2011).
[DOI: 10.1002/ar.21360]
Ben-Mordechai, T. et al. Targeting macrophage subsets for infarct repair. J. Cardiovasc. Pharmacol. Ther. 20, 36–51 (2015).
[DOI: 10.1177/1074248414534916]
Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A. & Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185 (2013).
[DOI: 10.1002/path.4133]
Ferrante, C. J. & Leibovich, S. J. Regulation of macrophage polarization and wound healing. Adv. Wound Care 1, 10–16 (2012).
[DOI: 10.1089/wound.2011.0307]
Liu, J. Y., Peng, H. F. & Andreadis, S. T. Contractile smooth muscle cells derived from hair-follicle stem cells. Cardiovasc. Res. 79, 24–33 (2008).
[DOI: 10.1093/cvr/cvn059]
Swartz, D. D., Russell, J. A. & Andreadis, S. T. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J. Physiol. Heart Circ. Physiol. 288, H1451–H1460 (2005).
[DOI: 10.1152/ajpheart.00479.2004]
Geer, D. J., Swartz, D. D. & Andreadis, S. T. Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am. J. Pathol. 167, 1575–1586 (2005).
[DOI: 10.1016/S0002-9440(10)61242-4]
White, L. A. et al. The assembly and application of ‘shear rings’: a novel endothelial model for orbital, unidirectional and periodic fluid flow and shear stress. J. Vis. Exp. https://doi.org/10.3791/54632 (2016).
Smith, P. K., Mallia, A. K. & Hermanson, G. T. Colorimetric method for the assay of heparin content in immobilized heparin preparations. Anal. Biochem. 109, 466–473 (1980).
[DOI: 10.1016/0003-2697(80)90679-X]
Frohlich, E. et al. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol. In Vitro 27, 409–417 (2013).
[DOI: 10.1016/j.tiv.2012.08.008]
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).
[DOI: 10.1016/j.cell.2019.05.031]
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).
[DOI: 10.1093/nar/30.1.207]