Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming.

Llorenç Solé-Boldo, Günter Raddatz, Sabrina Schütz, Jan-Philipp Mallm, Karsten Rippe, Anke S Lonsdorf, Manuel Rodríguez-Paredes, Frank Lyko
Author Information
  1. Llorenç Solé-Boldo: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany. ORCID
  2. Günter Raddatz: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
  3. Sabrina Schütz: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
  4. Jan-Philipp Mallm: Division of Chromatin Networks, German Cancer Research Center and Bioquant, 69120, Heidelberg, Germany.
  5. Karsten Rippe: Division of Chromatin Networks, German Cancer Research Center and Bioquant, 69120, Heidelberg, Germany. ORCID
  6. Anke S Lonsdorf: Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120, Heidelberg, Germany.
  7. Manuel Rodríguez-Paredes: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany. m.rodriguez@dkfz.de. ORCID
  8. Frank Lyko: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany. f.lyko@dkfz.de.

Abstract

Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results define four main subpopulations that can be spatially localized and show differential secretory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that this fibroblast 'priming' becomes reduced with age. We also show that aging causes a substantial reduction in the predicted interactions between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work thus provides evidence for a functional specialization of human dermal fibroblasts and identifies the partial loss of cellular identity as an important age-related change in the human dermis. These findings have important implications for understanding human skin aging and its associated phenotypes.

References

  1. Doebel, T., Voisin, B. & Nagao, K. Langerhans cells—the macrophage in dendritic cell clothing. Trends Immunol. 38, 817–828 (2017). [PMID: 28720426]
  2. Shain, A. H. & Bastian, B. C. From melanocytes to melanomas. Nat. Rev. Cancer 16, 345–358 (2016). [PMID: 27125352]
  3. Simpson, C. L., Patel, D. M. & Green, K. J. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 565–580 (2011). [PMID: 21860392]
  4. Woo, S. H., Lumpkin, E. A. & Patapoutian, A. Merkel cells and neurons keep in touch. Trends Cell Biol. 25, 74–81 (2015). [PMID: 25480024]
  5. Rognoni, E. & Watt, F. M. Skin cell heterogeneity in development, wound healing, and cancer. Trends Cell Biol. 28, 709–722 (2018). [PMID: 29807713]
  6. Sriram, G., Bigliardi, P. L. & Bigliardi-Qi, M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur. J. Cell Biol. 94, 483–512 (2015). [PMID: 26344860]
  7. Pawlina, W. & Ross, M. Histology: A Text and Atlas with Correlated Cell and Molecular Biology. (Wolters Kluwer Health, 2015).
  8. Alcolea, M. P. & Jones, P. H. Lineage analysis of epidermal stem cells. Cold Spring Harb. Perspect. Med. 4, a015206 (2014). [PMID: 24384814]
  9. Driskell, R. R. & Watt, F. M. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92–99 (2015). [PMID: 25455110]
  10. Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33–45 (2012). [PMID: 22265400]
  11. Janson, D. G., Saintigny, G., Van Adrichem, A., Mahé, C. & El Ghalbzouri, A. Different gene expression patterns in human papillary and reticular fibroblasts. J. Invest. Dermatol. 132, 2565–2572 (2012). [PMID: 22696053]
  12. Schafer, I. A., Pandy, M., Ferguson, R. & Davis, B. R. Comparative observation of fibroblasts derived from the papillary and reticular dermis of infants and adults: growth kinetics, packing density at confluence and surface morphology. Mech. Ageing Dev. 31, 275–293 (1985). [PMID: 4068767]
  13. Schönherr, E., Beavan, L. A., Hausser, H., Kresse, H. & Culp, L. A. Differences in decorin expression by papillary and reticular fibroblasts in vivo and in vitro. Biochem. J. 290, 893–899 (1993). [PMID: 8457216]
  14. Sorrell, J. M. Fibroblast heterogeneity: more than skin deep. J. Cell Sci. 117, 667–675 (2004). [PMID: 14754903]
  15. Schumacher, M. et al. Efficient keratinocyte differentiation strictly depends on JNK-induced soluble factors in fibroblasts. J. Invest. Dermatol. 134, 1332–1341 (2014). [PMID: 24335928]
  16. Taniguchi, K. et al. Periostin controls keratinocyte proliferation and differentiation by interacting with the paracrine IL-1α/IL-6 loop. J. Invest. Dermatol. 134, 1295–1304 (2014). [PMID: 24352037]
  17. Mine, S., Fortunel, N. O., Pageon, H. & Asselineau, D. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS ONE 3, e4066 (2008). [PMID: 19115004]
  18. Haydont, V., Bernard, B. A. & Fortunel, N. O. Age-related evolutions of the dermis: clinical signs, fibroblast and extracellular matrix dynamics. Mech. Ageing Dev. 177, 150–156 (2019). [PMID: 29548941]
  19. Haniffa, M. A. et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J. Immunol. 179, 1595–1604 (2007). [PMID: 17641026]
  20. Sorrell, J. M. & Caplan, A. I. Chapter 4 Fibroblasts—a diverse population at the center of it all. Int. Rev. Cell Mol. Biol. 276, 161–214 (2009). [PMID: 19584013]
  21. Werner, S., Krieg, T. & Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol. 127, 998–1008 (2007). [PMID: 17435785]
  22. Rinkevich, Y. et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015). [PMID: 25883361]
  23. Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast. Aging Cell 175, 1575–1590 (2018).
  24. Tabib, T., Morse, C., Wang, T., Chen, W. & Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J. Invest. Dermatol. 138, 802–810 (2017). [PMID: 29080679]
  25. Yaar, M. & Gilchrest, B. A. Photoageing: mechanism, prevention and therapy. Br. J. Dermatol. 157, 874–887 (2007). [PMID: 17711532]
  26. Varani, J. Fibroblast aging: intrinsic and extrinsic factors. Drug Discov. Today. Therap. Strateg. 7, 65–70 (2010). [DOI: 10.1016/j.ddstr.2011.06.001]
  27. Philippeos, C. et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J. Invest. Dermatol. 138, 811–825 (2018). [PMID: 29391249]
  28. Cua, A., Wilhelm, K. & Maibach, H. Elastic properties of human skin: relation to age, sex and anatomical region. Arch. Dermatol. Res. 282, 283–288 (1990). [PMID: 2221979]
  29. Giacomoni, P. U., Mammone, T. & Teri, M. Gender-linked differences in human skin. J. Dermatol. Sci. 55, 144–149 (2009). [PMID: 19574028]
  30. Krutmann, J., Bouloc, A., Sore, G., Bernard, B. A. & Passeron, T. The skin aging exposome. J. Dermatol. Sci. 85, 152–161 (2017). [PMID: 27720464]
  31. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). [PMID: 4481139]
  32. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–47 (2019). [DOI: 10.1038/nbt.4314]
  33. Moll, R., Divo, M. & Langbein, L. The human keratins: biology and pathology. Histochem. Cell Biol. 129, 705–733 (2008). [PMID: 18461349]
  34. Gilchrest, B. A. A review of skin ageing and its medical therapy. Br. J. Dermatol. 135, 867–875 (1996). [PMID: 8977705]
  35. Rittié, L. & Fisher, G. J. Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med. 5, a015370 (2015). [PMID: 25561721]
  36. Tigges, J. et al. The hallmarks of fibroblast ageing. Mechanisms Ageing Dev. 138, 26–44 (2014). [DOI: 10.1016/j.mad.2014.03.004]
  37. Kadler, K. E., Baldock, C., Bella, J. & Boot-Handford, R. P. Collagen at a glance. J. Cell Sci. 120, 1955–1958 (2007). [PMID: 17550969]
  38. Li, A., Wei, Y., Hung, C. & Vunjak-Novakovic, G. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials 173, 47–57 (2018). [PMID: 29758546]
  39. Wang, W. et al. Collagen XXIV (Col24a1) promotes osteoblastic differentiation and mineralization through TGF-β/smads signaling pathway. Int. J. Biol. Sci. 8, 1310–1322 (2012). [PMID: 23139630]
  40. Haydont, V., Neiveyans, V., Fortunel, N. O. & Asselineau, D. Transcriptome profiling of human papillary and reticular fibroblasts from adult interfollicular dermis pinpoints the ‘tissue skeleton’ gene network as a component of skin chrono-ageing. Mech. Ageing Dev. 179, 60–77 (2019). [PMID: 30641112]
  41. Peltonen, S. et al. A novel component of epidermal cell-matrix and cell-cell contacts: transmembrane protein type XIII collagen. J. Invest. Dermatol. 113, 635–642 (1999). [PMID: 10504453]
  42. Veit, G. et al. Collagen XXIII, novel ligand for integrin α2β1in the epidermis. J. Biol. Chem. 286, 27804–27813 (2011). [PMID: 21652699]
  43. Halfter, W., Dong, S., Schurer, B. & Cole, G. J. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J. Biol. Chem. 273, 25404–25412 (1998). [PMID: 9738008]
  44. Nauroy, P. et al. Human dermal fibroblast subpopulations display distinct gene signatures related to cell behaviors and matrisome. J. Invest. Dermatol. 137, 1787–1789 (2017). [PMID: 28428131]
  45. Lynch, M. D. & Watt, F. M. Fibroblast heterogeneity: implications for human disease. J. Clin. Investig. 128, 26–35 (2018). [PMID: 29293096]
  46. Kozieł, R., Greussing, R., Maier, A. B., Declercq, L. & Jansen-Dürr, P. Functional interplay between mitochondrial and proteasome activity in skin aging. J. Invest. Dermatol. 131, 594–603 (2011). [PMID: 21191400]
  47. Zhang, S. & Duan, E. Fighting against skin aging: the way from bench to bedside. Cell Transplant. 27, 729–738 (2018). [PMID: 29692196]
  48. Zhuang, Y. & Lyga, J. Inflammaging in skin and other tissues—the roles of complement system and macrophage. Inflam. Allergy Drug Targets 13, 153–161 (2014). [DOI: 10.2174/1871528113666140522112003]
  49. Waldera Lupa, D. M. et al. Characterization of skin aging–associated secreted proteins (SAASP) produced by dermal fibroblasts isolated from intrinsically aged human skin. J. Invest. Dermatol. 135, 1954–1968 (2015). [PMID: 25815425]
  50. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018). [DOI: 10.1038/s41586-018-0698-6]
  51. Deng, Y., Bao, F., Dai, Q., Wu, L. F. & Altschuler, S. J. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat. Methods 16, 311–314 (2019). [PMID: 30886411]
  52. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015). [PMID: 26000846]
  53. Chen, F. G. et al. Clonal analysis of nestin vimentin+ multipotent fibroblasts isolated from human dermis. J. Cell Sci. 120, 2875–2883 (2007). [PMID: 17652163]
  54. Kuroda, Y. et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc. Natl Acad. Sci. USA 107, 8639–8643 (2010). [PMID: 20421459]
  55. Kendall, R. T. & Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol. 5, 123 (2014). [PMID: 24904424]
  56. Wong, V. W., Sorkin, M., Glotzbach, J. P., Longaker, M. T. & Gurtner, G. C. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol. 2011, 1–8 (2010).
  57. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015). [PMID: 4430369]
  58. R Core Team. R: A language and environment for statistical computing. http://www.r-project.org (2018).
  59. Paquet-Fifield, S. et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J. Clin. Invest. 119, 2795–2806 (2009). [PMID: 19652362]
  60. Elizondo, D. M., Andargie, T. E., Yang, D., Kacsinta, A. D. & Lipscomb, M. W. Inhibition of allograft inflammatory factor-1 in dendritic cells restrains CD4+T cell effector responses and induces CD25+Foxp3+T regulatory subsets. Front. Immunol. 8, 1502 (2017). [PMID: 29167673]
  61. Chtanova, T. et al. Identification of T cell-restricted genes, and signatures for different T cell responses, using a comprehensive collection of microarray datasets. J. Immunol. 175, 7837–7847 (2005). [PMID: 16339519]
  62. Leeuwenberg, J. F. et al. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77, 543–549 (1992). [PMID: 1283598]
  63. Lee, S.-J. et al. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci. Rep. 5, 11019 (2015). [PMID: 26066093]
  64. Cohen, R. M. et al. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood 112, 4284–4291 (2008). [PMID: 18694998]
  65. Bissig, C., Rochin, L. & van Niel, G. PMEL amyloid fibril formation: the bright steps of pigmentation. Int. J. Mol. Sci. 17, pii:E1438 (2016). [DOI: 10.3390/ijms17091438]
  66. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). [PMID: 22743772]
  67. Valtola, R. et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 154, 1381–1390 (1999). [PMID: 10329591]

MeSH Term

Adult
Age Factors
Aged
Aged, 80 and over
Cell Communication
Cellular Senescence
Female
Fibroblasts
Gene Expression Profiling
Humans
Male
Middle Aged
Phenotype
RNA-Seq
Single-Cell Analysis
Skin
Skin Aging
Transcriptome