Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming.
Llorenç Solé-Boldo, Günter Raddatz, Sabrina Schütz, Jan-Philipp Mallm, Karsten Rippe, Anke S Lonsdorf, Manuel Rodríguez-Paredes, Frank Lyko
Author Information
Llorenç Solé-Boldo: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany. ORCID
Günter Raddatz: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
Sabrina Schütz: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
Jan-Philipp Mallm: Division of Chromatin Networks, German Cancer Research Center and Bioquant, 69120, Heidelberg, Germany.
Karsten Rippe: Division of Chromatin Networks, German Cancer Research Center and Bioquant, 69120, Heidelberg, Germany. ORCID
Anke S Lonsdorf: Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120, Heidelberg, Germany.
Manuel Rodríguez-Paredes: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany. m.rodriguez@dkfz.de. ORCID
Frank Lyko: Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany. f.lyko@dkfz.de.
Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results define four main subpopulations that can be spatially localized and show differential secretory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that this fibroblast 'priming' becomes reduced with age. We also show that aging causes a substantial reduction in the predicted interactions between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work thus provides evidence for a functional specialization of human dermal fibroblasts and identifies the partial loss of cellular identity as an important age-related change in the human dermis. These findings have important implications for understanding human skin aging and its associated phenotypes.
References
Doebel, T., Voisin, B. & Nagao, K. Langerhans cells—the macrophage in dendritic cell clothing. Trends Immunol. 38, 817–828 (2017).
[PMID: 28720426]
Shain, A. H. & Bastian, B. C. From melanocytes to melanomas. Nat. Rev. Cancer 16, 345–358 (2016).
[PMID: 27125352]
Simpson, C. L., Patel, D. M. & Green, K. J. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 565–580 (2011).
[PMID: 21860392]
Woo, S. H., Lumpkin, E. A. & Patapoutian, A. Merkel cells and neurons keep in touch. Trends Cell Biol. 25, 74–81 (2015).
[PMID: 25480024]
Rognoni, E. & Watt, F. M. Skin cell heterogeneity in development, wound healing, and cancer. Trends Cell Biol. 28, 709–722 (2018).
[PMID: 29807713]
Sriram, G., Bigliardi, P. L. & Bigliardi-Qi, M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur. J. Cell Biol. 94, 483–512 (2015).
[PMID: 26344860]
Pawlina, W. & Ross, M. Histology: A Text and Atlas with Correlated Cell and Molecular Biology. (Wolters Kluwer Health, 2015).
Alcolea, M. P. & Jones, P. H. Lineage analysis of epidermal stem cells. Cold Spring Harb. Perspect. Med. 4, a015206 (2014).
[PMID: 24384814]
Driskell, R. R. & Watt, F. M. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25, 92–99 (2015).
[PMID: 25455110]
Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33–45 (2012).
[PMID: 22265400]
Janson, D. G., Saintigny, G., Van Adrichem, A., Mahé, C. & El Ghalbzouri, A. Different gene expression patterns in human papillary and reticular fibroblasts. J. Invest. Dermatol. 132, 2565–2572 (2012).
[PMID: 22696053]
Schafer, I. A., Pandy, M., Ferguson, R. & Davis, B. R. Comparative observation of fibroblasts derived from the papillary and reticular dermis of infants and adults: growth kinetics, packing density at confluence and surface morphology. Mech. Ageing Dev. 31, 275–293 (1985).
[PMID: 4068767]
Schönherr, E., Beavan, L. A., Hausser, H., Kresse, H. & Culp, L. A. Differences in decorin expression by papillary and reticular fibroblasts in vivo and in vitro. Biochem. J. 290, 893–899 (1993).
[PMID: 8457216]
Sorrell, J. M. Fibroblast heterogeneity: more than skin deep. J. Cell Sci. 117, 667–675 (2004).
[PMID: 14754903]
Schumacher, M. et al. Efficient keratinocyte differentiation strictly depends on JNK-induced soluble factors in fibroblasts. J. Invest. Dermatol. 134, 1332–1341 (2014).
[PMID: 24335928]
Taniguchi, K. et al. Periostin controls keratinocyte proliferation and differentiation by interacting with the paracrine IL-1α/IL-6 loop. J. Invest. Dermatol. 134, 1295–1304 (2014).
[PMID: 24352037]
Mine, S., Fortunel, N. O., Pageon, H. & Asselineau, D. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS ONE 3, e4066 (2008).
[PMID: 19115004]
Haydont, V., Bernard, B. A. & Fortunel, N. O. Age-related evolutions of the dermis: clinical signs, fibroblast and extracellular matrix dynamics. Mech. Ageing Dev. 177, 150–156 (2019).
[PMID: 29548941]
Haniffa, M. A. et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J. Immunol. 179, 1595–1604 (2007).
[PMID: 17641026]
Sorrell, J. M. & Caplan, A. I. Chapter 4 Fibroblasts—a diverse population at the center of it all. Int. Rev. Cell Mol. Biol. 276, 161–214 (2009).
[PMID: 19584013]
Werner, S., Krieg, T. & Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol. 127, 998–1008 (2007).
[PMID: 17435785]
Rinkevich, Y. et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015).
[PMID: 25883361]
Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast. Aging Cell 175, 1575–1590 (2018).
Tabib, T., Morse, C., Wang, T., Chen, W. & Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J. Invest. Dermatol. 138, 802–810 (2017).
[PMID: 29080679]
Yaar, M. & Gilchrest, B. A. Photoageing: mechanism, prevention and therapy. Br. J. Dermatol. 157, 874–887 (2007).
[PMID: 17711532]
Varani, J. Fibroblast aging: intrinsic and extrinsic factors. Drug Discov. Today. Therap. Strateg. 7, 65–70 (2010).
[DOI: 10.1016/j.ddstr.2011.06.001]
Philippeos, C. et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J. Invest. Dermatol. 138, 811–825 (2018).
[PMID: 29391249]
Cua, A., Wilhelm, K. & Maibach, H. Elastic properties of human skin: relation to age, sex and anatomical region. Arch. Dermatol. Res. 282, 283–288 (1990).
[PMID: 2221979]
Giacomoni, P. U., Mammone, T. & Teri, M. Gender-linked differences in human skin. J. Dermatol. Sci. 55, 144–149 (2009).
[PMID: 19574028]
Krutmann, J., Bouloc, A., Sore, G., Bernard, B. A. & Passeron, T. The skin aging exposome. J. Dermatol. Sci. 85, 152–161 (2017).
[PMID: 27720464]
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
[PMID: 4481139]
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–47 (2019).
[DOI: 10.1038/nbt.4314]
Moll, R., Divo, M. & Langbein, L. The human keratins: biology and pathology. Histochem. Cell Biol. 129, 705–733 (2008).
[PMID: 18461349]
Gilchrest, B. A. A review of skin ageing and its medical therapy. Br. J. Dermatol. 135, 867–875 (1996).
[PMID: 8977705]
Rittié, L. & Fisher, G. J. Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med. 5, a015370 (2015).
[PMID: 25561721]
Tigges, J. et al. The hallmarks of fibroblast ageing. Mechanisms Ageing Dev. 138, 26–44 (2014).
[DOI: 10.1016/j.mad.2014.03.004]
Kadler, K. E., Baldock, C., Bella, J. & Boot-Handford, R. P. Collagen at a glance. J. Cell Sci. 120, 1955–1958 (2007).
[PMID: 17550969]
Li, A., Wei, Y., Hung, C. & Vunjak-Novakovic, G. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials 173, 47–57 (2018).
[PMID: 29758546]
Wang, W. et al. Collagen XXIV (Col24a1) promotes osteoblastic differentiation and mineralization through TGF-β/smads signaling pathway. Int. J. Biol. Sci. 8, 1310–1322 (2012).
[PMID: 23139630]
Haydont, V., Neiveyans, V., Fortunel, N. O. & Asselineau, D. Transcriptome profiling of human papillary and reticular fibroblasts from adult interfollicular dermis pinpoints the ‘tissue skeleton’ gene network as a component of skin chrono-ageing. Mech. Ageing Dev. 179, 60–77 (2019).
[PMID: 30641112]
Peltonen, S. et al. A novel component of epidermal cell-matrix and cell-cell contacts: transmembrane protein type XIII collagen. J. Invest. Dermatol. 113, 635–642 (1999).
[PMID: 10504453]
Veit, G. et al. Collagen XXIII, novel ligand for integrin α2β1in the epidermis. J. Biol. Chem. 286, 27804–27813 (2011).
[PMID: 21652699]
Halfter, W., Dong, S., Schurer, B. & Cole, G. J. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J. Biol. Chem. 273, 25404–25412 (1998).
[PMID: 9738008]
Nauroy, P. et al. Human dermal fibroblast subpopulations display distinct gene signatures related to cell behaviors and matrisome. J. Invest. Dermatol. 137, 1787–1789 (2017).
[PMID: 28428131]
Lynch, M. D. & Watt, F. M. Fibroblast heterogeneity: implications for human disease. J. Clin. Investig. 128, 26–35 (2018).
[PMID: 29293096]
Kozieł, R., Greussing, R., Maier, A. B., Declercq, L. & Jansen-Dürr, P. Functional interplay between mitochondrial and proteasome activity in skin aging. J. Invest. Dermatol. 131, 594–603 (2011).
[PMID: 21191400]
Zhang, S. & Duan, E. Fighting against skin aging: the way from bench to bedside. Cell Transplant. 27, 729–738 (2018).
[PMID: 29692196]
Zhuang, Y. & Lyga, J. Inflammaging in skin and other tissues—the roles of complement system and macrophage. Inflam. Allergy Drug Targets 13, 153–161 (2014).
[DOI: 10.2174/1871528113666140522112003]
Waldera Lupa, D. M. et al. Characterization of skin aging–associated secreted proteins (SAASP) produced by dermal fibroblasts isolated from intrinsically aged human skin. J. Invest. Dermatol. 135, 1954–1968 (2015).
[PMID: 25815425]
Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).
[DOI: 10.1038/s41586-018-0698-6]
Deng, Y., Bao, F., Dai, Q., Wu, L. F. & Altschuler, S. J. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat. Methods 16, 311–314 (2019).
[PMID: 30886411]
Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).
[PMID: 26000846]
Chen, F. G. et al. Clonal analysis of nestin vimentin+ multipotent fibroblasts isolated from human dermis. J. Cell Sci. 120, 2875–2883 (2007).
[PMID: 17652163]
Kuroda, Y. et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc. Natl Acad. Sci. USA 107, 8639–8643 (2010).
[PMID: 20421459]
Kendall, R. T. & Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol. 5, 123 (2014).
[PMID: 24904424]
Wong, V. W., Sorkin, M., Glotzbach, J. P., Longaker, M. T. & Gurtner, G. C. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol. 2011, 1–8 (2010).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
[PMID: 4430369]
R Core Team. R: A language and environment for statistical computing. http://www.r-project.org (2018).
Paquet-Fifield, S. et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J. Clin. Invest. 119, 2795–2806 (2009).
[PMID: 19652362]
Elizondo, D. M., Andargie, T. E., Yang, D., Kacsinta, A. D. & Lipscomb, M. W. Inhibition of allograft inflammatory factor-1 in dendritic cells restrains CD4+T cell effector responses and induces CD25+Foxp3+T regulatory subsets. Front. Immunol. 8, 1502 (2017).
[PMID: 29167673]
Chtanova, T. et al. Identification of T cell-restricted genes, and signatures for different T cell responses, using a comprehensive collection of microarray datasets. J. Immunol. 175, 7837–7847 (2005).
[PMID: 16339519]
Leeuwenberg, J. F. et al. E-selectin and intercellular adhesion molecule-1 are released by activated human endothelial cells in vitro. Immunology 77, 543–549 (1992).
[PMID: 1283598]
Lee, S.-J. et al. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci. Rep. 5, 11019 (2015).
[PMID: 26066093]
Cohen, R. M. et al. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood 112, 4284–4291 (2008).
[PMID: 18694998]
Bissig, C., Rochin, L. & van Niel, G. PMEL amyloid fibril formation: the bright steps of pigmentation. Int. J. Mol. Sci. 17, pii:E1438 (2016).
[DOI: 10.3390/ijms17091438]
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
[PMID: 22743772]
Valtola, R. et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 154, 1381–1390 (1999).
[PMID: 10329591]