Subcellular Spatial Transcriptomes: Emerging Frontier for Understanding Gene Regulation.

Furqan M Fazal, Howard Y Chang
Author Information
  1. Furqan M Fazal: Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA.
  2. Howard Y Chang: Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA.

Abstract

RNAs are trafficked and localized with exquisite precision inside the cell. Studies of candidate messenger RNAs have shown the vital importance of RNA subcellular location in development and cellular function. New sequencing- and imaging-based methods are providing complementary insights into subcellular localization of RNAs transcriptome-wide. APEX-seq and ribosome profiling as well as proximity-labeling approaches have revealed thousands of transcript isoforms are localized to distinct cytotopic locations, including locations that defy biochemical fractionation and hence were missed by prior studies. Sequences in the 3' and 5' untranslated regions (UTRs) serve as "zip codes" to direct transcripts to particular locales, and it is clear that intronic and retrotransposable sequences within transcripts have been co-opted by cells to control localization. Molecular motors, nuclear-to-cytosol RNA export, liquid-liquid phase separation, RNA modifications, and RNA structure dynamically shape the subcellular transcriptome. Location-based RNA regulation continues to pose new mysteries for the field, yet promises to reveal insights into fundamental cell biology and disease mechanisms.

References

  1. Elife. 2017 Dec 14;6: [PMID: 29239719]
  2. Science. 2006 Oct 6;314(5796):130-3 [PMID: 17023659]
  3. EMBO Rep. 2019 Oct 4;20(10):e48068 [PMID: 31448565]
  4. Science. 2014 Nov 7;346(6210):748-51 [PMID: 25378625]
  5. Cell. 2006 Dec 29;127(7):1389-400 [PMID: 17190602]
  6. Science. 2013 Mar 15;339(6125):1328-1331 [PMID: 23371551]
  7. Science. 2016 Oct 28;354(6311):468-472 [PMID: 27492478]
  8. Nat Commun. 2016 Jul 08;7:12139 [PMID: 27387371]
  9. Nat Methods. 2019 Dec;16(12):1297-1305 [PMID: 31740818]
  10. PLoS Genet. 2019 Jul 1;15(7):e1008248 [PMID: 31260446]
  11. Biochem Biophys Res Commun. 2018 May 15;499(3):397-402 [PMID: 29524415]
  12. Cell. 2013 Mar 14;152(6):1252-69 [PMID: 23498935]
  13. Genes (Basel). 2015 Mar 31;6(2):163-84 [PMID: 25836925]
  14. Nature. 2008 May 1;453(7191):115-9 [PMID: 18451862]
  15. RNA. 2008 Mar;14(3):445-53 [PMID: 18192611]
  16. Dev Cell. 2010 Sep 14;19(3):469-76 [PMID: 20833368]
  17. Nature. 2010 Sep 30;467(7315):604-7 [PMID: 20844488]
  18. Nature. 2005 Nov 24;438(7067):512-5 [PMID: 16306994]
  19. Nat Methods. 2018 Mar;15(3):201-206 [PMID: 29334379]
  20. Science. 2015 Jan 23;347(6220):1260419 [PMID: 25613900]
  21. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  22. PLoS Biol. 2008 Oct 28;6(10):e255 [PMID: 18959479]
  23. Science. 1998 Apr 24;280(5363):585-90 [PMID: 9554849]
  24. Mol Cell. 2017 Nov 16;68(4):808-820.e5 [PMID: 29129640]
  25. Nature. 1995 Oct 12;377(6549):524-7 [PMID: 7566149]
  26. Nat Cell Biol. 2019 Feb;21(2):162-168 [PMID: 30664789]
  27. Nat Methods. 2016 Jun;13(6):508-14 [PMID: 27018577]
  28. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9426-31 [PMID: 22615357]
  29. Mol Cell. 2019 Oct 3;76(1):96-109.e9 [PMID: 31474572]
  30. Nucleic Acids Res. 2019 Mar 18;47(5):2560-2573 [PMID: 30590745]
  31. Bioinformatics. 2018 Jul 1;34(13):2185-2194 [PMID: 29462250]
  32. PLoS One. 2008 Jun 04;3(6):e2293 [PMID: 18523582]
  33. Nat Chem Biol. 2018 Oct;14(10):964-971 [PMID: 30061719]
  34. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  35. Elife. 2016 May 20;5: [PMID: 27198188]
  36. Nat Biotechnol. 2019 Nov;37(11):1287-1293 [PMID: 31548726]
  37. Dev Cell. 2003 Jun;4(6):941-52 [PMID: 12791277]
  38. Cell. 1985 Oct;42(3):769-77 [PMID: 2414011]
  39. RNA. 2020 Jul;26(7):851-865 [PMID: 32220894]
  40. Nat Methods. 2019 Jun;16(6):489-492 [PMID: 31133759]
  41. Science. 2018 May 25;360(6391):918-921 [PMID: 29650702]
  42. Nat Biotechnol. 2010 Dec;28(12):1248-50 [PMID: 21139605]
  43. Cell. 2016 Apr 7;165(2):488-96 [PMID: 26997482]
  44. Nature. 2019 Nov;575(7782):390-394 [PMID: 31618757]
  45. Nat Struct Mol Biol. 2012 Mar 18;19(4):441-9 [PMID: 22426546]
  46. Genes Dev. 2006 Aug 15;20(16):2223-37 [PMID: 16912274]
  47. Nat Methods. 2014 Apr;11(4):360-1 [PMID: 24681720]
  48. Angew Chem Int Ed Engl. 2019 Aug 19;58(34):11763-11767 [PMID: 31240809]
  49. Genome Res. 2014 Nov;24(11):1774-86 [PMID: 25258385]
  50. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10979-83 [PMID: 1438302]
  51. Elife. 2017 Oct 06;6: [PMID: 28984244]
  52. Curr Biol. 2009 Jun 23;19(12):1058-63 [PMID: 19481457]
  53. Nat Methods. 2008 Oct;5(10):877-9 [PMID: 18806792]
  54. Cell. 2008 Sep 5;134(5):843-53 [PMID: 18775316]
  55. Bioinformatics. 2018 Dec 15;34(24):4196-4204 [PMID: 29931187]
  56. Neuron. 2014 Feb 5;81(3):536-543 [PMID: 24507191]
  57. Nature. 2012 Sep 6;489(7414):101-8 [PMID: 22955620]
  58. Nat Chem Biol. 2019 Nov;15(11):1110-1119 [PMID: 31591565]
  59. Sci Rep. 2017 May 8;7(1):1550 [PMID: 28484218]
  60. Mol Cell. 2019 Nov 7;76(3):412-422.e5 [PMID: 31522988]
  61. Annu Rev Genet. 2016 Nov 23;50:235-266 [PMID: 27648642]
  62. RNA. 2019 May;25(5):557-572 [PMID: 30745363]
  63. Cell. 2019 Jul 11;178(2):473-490.e26 [PMID: 31230715]
  64. Cell. 2018 Jul 12;174(2):363-376.e16 [PMID: 29887381]
  65. Science. 2017 May 26;356(6340): [PMID: 28495876]
  66. Science. 2007 Jan 5;315(5808):97-100 [PMID: 17204650]
  67. J Cell Biol. 2014 Oct 27;207(2):213-23 [PMID: 25349259]
  68. Nat Commun. 2013;4:2414 [PMID: 24008311]
  69. Genome Res. 2019 Feb;29(2):208-222 [PMID: 30587508]
  70. Science. 2008 Mar 21;319(5870):1668-72 [PMID: 18309045]
  71. Genes Dev. 2016 Mar 1;30(5):594-609 [PMID: 26944682]
  72. Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23539-23547 [PMID: 32907940]
  73. Cell. 2018 Jan 25;172(3):590-604.e13 [PMID: 29373831]
  74. Nat Methods. 2019 Mar;16(3):225-234 [PMID: 30804549]
  75. Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12863-12872 [PMID: 31189591]
  76. Nat Protoc. 2016 Mar;11(3):456-75 [PMID: 26866790]
  77. Science. 2014 Mar 21;343(6177):1360-3 [PMID: 24578530]
  78. Neuron. 2016 Oct 19;92(2):342-357 [PMID: 27764670]
  79. Mol Cell Biol. 2000 Nov;20(21):7881-92 [PMID: 11027259]
  80. Science. 2018 Nov 16;362(6416): [PMID: 30385464]
  81. Nature. 2019 Jul;571(7765):424-428 [PMID: 31292544]
  82. Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28 [PMID: 25118718]
  83. Cell Rep. 2015 Dec 29;13(12):2653-62 [PMID: 26711333]
  84. Nat Genet. 2002 Feb;30(2):167-74 [PMID: 11780141]
  85. Nat Rev Genet. 2013 Apr;14(4):275-87 [PMID: 23478349]
  86. Neuron. 2014 Oct 22;84(2):292-309 [PMID: 25374356]
  87. Nat Methods. 2018 Dec;15(12):1074-1082 [PMID: 30478324]
  88. Nat Methods. 2013 Sep;10(9):857-60 [PMID: 23852452]
  89. Science. 2016 Jun 17;352(6292):1430-5 [PMID: 27313041]
  90. Neuron. 2010 Nov 18;68(4):610-38 [PMID: 21092854]
  91. Nat Methods. 2019 Sep;16(9):879-886 [PMID: 31384046]
  92. Science. 2011 Feb 25;331(6020):1081-4 [PMID: 21350180]
  93. Nat Chem Biol. 2020 Sep;16(9):955-963 [PMID: 32451507]
  94. Mol Cell Biol. 2010 Jan;30(1):284-94 [PMID: 19858288]
  95. RNA. 2018 Jan;24(1):98-113 [PMID: 29079635]
  96. Nucleic Acids Res. 2019 May 21;47(9):e52 [PMID: 30805613]
  97. Nat Struct Mol Biol. 2014 Feb;21(2):198-206 [PMID: 24463464]
  98. Sci Rep. 2018 Nov 6;8(1):16385 [PMID: 30401954]
  99. Nat Methods. 2018 Mar;15(3):207-212 [PMID: 29400715]
  100. J Cell Biol. 1994 Oct;127(2):441-51 [PMID: 7929587]
  101. Neuron. 2004 Aug 19;43(4):513-25 [PMID: 15312650]
  102. Science. 2017 Sep 22;357(6357):1299-1303 [PMID: 28798045]
  103. Neuron. 2012 May 10;74(3):453-66 [PMID: 22578497]
  104. RNA. 2012 Apr;18(4):738-51 [PMID: 22355166]
  105. Mol Biol Cell. 2007 Feb;18(2):362-8 [PMID: 17108321]
  106. Nat Struct Mol Biol. 2007 Sep;14(9):796-806 [PMID: 17676063]
  107. Cell. 2015 Apr 9;161(2):404-16 [PMID: 25843628]
  108. Mol Cell. 2019 Aug 22;75(4):875-887.e5 [PMID: 31442426]
  109. Mol Cell. 1998 Oct;2(4):437-45 [PMID: 9809065]
  110. Bioinformatics. 2019 Jul 15;35(14):i333-i342 [PMID: 31510698]
  111. Nat Struct Mol Biol. 2019 Apr;26(4):322-330 [PMID: 30886404]
  112. Curr Opin Genet Dev. 2007 Apr;17(2):100-6 [PMID: 17317147]
  113. EMBO Rep. 2002 Feb;3(2):159-64 [PMID: 11818335]
  114. Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22068-22079 [PMID: 32839320]
  115. ACS Chem Biol. 2017 Nov 17;12(11):2709-2714 [PMID: 28952711]
  116. Science. 2014 Nov 7;346(6210):1257521 [PMID: 25378630]
  117. PLoS One. 2019 Jun 17;14(6):e0218073 [PMID: 31206543]
  118. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20192-7 [PMID: 19918084]
  119. Cell. 1987 Dec 4;51(5):861-7 [PMID: 3479264]
  120. Elife. 2019 Nov 07;8: [PMID: 31697236]
  121. J Cell Biol. 2012 Mar 19;196(6):801-10 [PMID: 22412018]
  122. Mol Cell. 2019 Nov 7;76(3):395-411.e13 [PMID: 31522987]
  123. Science. 2018 May 25;360(6391):922-927 [PMID: 29650703]
  124. Development. 1993 Sep;119(1):169-78 [PMID: 8275853]
  125. Anal Chem. 2019 Feb 19;91(4):2626-2633 [PMID: 30720274]
  126. Nat Methods. 2018 Jun;15(6):433-436 [PMID: 29735996]
  127. Mol Cell. 2016 Mar 17;61(6):821-33 [PMID: 26907613]
  128. Cell. 1989 May 5;57(3):493-502 [PMID: 2541917]
  129. Cell. 2013 Mar 14;152(6):1298-307 [PMID: 23498938]
  130. Cell. 2016 May 5;165(4):990-1001 [PMID: 27153499]
  131. Cell. 1991 Jul 12;66(1):51-63 [PMID: 1712672]
  132. J Cell Biol. 2006 Mar 13;172(6):803-8 [PMID: 16520386]
  133. Cell Rep. 2019 Jul 23;28(4):845-854.e5 [PMID: 31340148]
  134. Nat Commun. 2017 Sep 19;8(1):583 [PMID: 28928394]
  135. Nucleic Acids Res. 2020 Mar 18;48(5):2621-2642 [PMID: 31863590]
  136. Science. 2018 Feb 9;359(6376):689-692 [PMID: 29348368]
  137. Elife. 2020 Aug 07;9: [PMID: 32762840]
  138. Nature. 2019 Apr;568(7751):235-239 [PMID: 30911168]
  139. Nature. 2004 Apr 29;428(6986):959-63 [PMID: 15118729]
  140. Nature. 2018 Mar 1;555(7694):107-111 [PMID: 29466324]
  141. Nat Biotechnol. 2020 Jan;38(1):56-65 [PMID: 31792407]
  142. Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):319-328 [PMID: 30290229]
  143. Nat Biotechnol. 2014 May;32(5):453-61 [PMID: 24811520]
  144. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499 [PMID: 31501331]
  145. Cell. 2017 Jun 15;169(7):1187-1200 [PMID: 28622506]
  146. Proc Natl Acad Sci U S A. 1989 Jan;86(1):177-81 [PMID: 2911567]
  147. Nat Methods. 2018 Jun;15(6):437-439 [PMID: 29735997]
  148. Nat Methods. 2017 Dec;14(12):1159-1162 [PMID: 29083401]
  149. RNA. 2011 Aug;17(8):1551-65 [PMID: 21705432]
  150. Nat Methods. 2019 Sep;16(9):862-865 [PMID: 31471614]
  151. Sci Adv. 2020 Mar 13;6(11):eaaz1588 [PMID: 32201729]
  152. Proc Natl Acad Sci U S A. 2019 May 28;116(22):10842-10851 [PMID: 31085639]
  153. Nat Commun. 2019 Jul 31;10(1):3359 [PMID: 31366910]

Grants

  1. RM1 HG007735/NHGRI NIH HHS
  2. R01 HG004361/NHGRI NIH HHS
  3. R00 HG010910/NHGRI NIH HHS
  4. K99 HG010910/NHGRI NIH HHS
  5. R35 CA209919/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0RNARNAssubcellularlocalizedcellinsightslocalizationlocationstranscriptstraffickedexquisiteprecisioninsideStudiescandidatemessengershownvitalimportancelocationdevelopmentcellularfunctionNewsequencing-imaging-basedmethodsprovidingcomplementarytranscriptome-wideAPEX-seqribosomeprofilingwellproximity-labelingapproachesrevealedthousandstranscriptisoformsdistinctcytotopicincludingdefybiochemicalfractionationhencemissedpriorstudiesSequences3'5'untranslatedregionsUTRsserve"zipcodes"directparticularlocalesclearintronicretrotransposablesequenceswithinco-optedcellscontrolMolecularmotorsnuclear-to-cytosolexportliquid-liquidphaseseparationmodificationsstructuredynamicallyshapetranscriptomeLocation-basedregulationcontinuesposenewmysteriesfieldyetpromisesrevealfundamentalbiologydiseasemechanismsSubcellularSpatialTranscriptomes:EmergingFrontierUnderstandingGeneRegulation

Similar Articles

Cited By