tRNA-Derived Fragments Can Serve as Arginine Donors for Protein Arginylation.

Irem Avcilar-Kucukgoze, Howard Gamper, Christine Polte, Zoya Ignatova, Ralph Kraetzner, Michael Shtutman, Ya-Ming Hou, Dawei W Dong, Anna Kashina
Author Information
  1. Irem Avcilar-Kucukgoze: Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  2. Howard Gamper: Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19144, USA.
  3. Christine Polte: Institute of Biochemistry and Molecular Biology, University of Hamburg, 20148 Hamburg, Germany.
  4. Zoya Ignatova: Institute of Biochemistry and Molecular Biology, University of Hamburg, 20148 Hamburg, Germany.
  5. Ralph Kraetzner: Department of Pediatrics and Adolescent Medicine, University Medical Center G��ttingen, 37075 G��ttingen, Germany.
  6. Michael Shtutman: Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
  7. Ya-Ming Hou: Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19144, USA.
  8. Dawei W Dong: Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  9. Anna Kashina: Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: akashina@upenn.edu.

Abstract

Arginyltransferase ATE1 mediates posttranslational arginylation and plays key roles in multiple physiological processes. ATE1 utilizes arginyl (Arg)-tRNA as the donor of Arg, putting this reaction into a direct competition with the protein synthesis machinery. Here, we address the question of ATE1- Arg-tRNA specificity as a potential mechanism enabling this competition in vivo. Using in vitro arginylation assays and Ate1 knockout models, we find that, in addition to full-length tRNA, ATE1 is also able to utilize short tRNA fragments that bear structural resemblance to tRNA-derived fragments (tRF), a recently discovered class of small regulatory non-coding RNAs with global emerging biological role. Ate1 knockout cells show a decrease in tRF generation and a significant increase in the ratio of tRNA:tRF compared with wild type, suggesting a functional link between tRF and arginylation. We propose that generation of physiologically important tRFs can serve as a switch between translation and protein arginylation.

Keywords

References

  1. Biochemistry. 1995 May 16;34(19):6527-32 [PMID: 7756283]
  2. Methods Mol Biol. 2015;1337:1-11 [PMID: 26285874]
  3. PLoS Biol. 2007 Oct;5(10):e258 [PMID: 17896865]
  4. RNA. 2018 Aug;24(8):1093-1105 [PMID: 29844106]
  5. Cancer Lett. 2018 Apr 10;419:1-7 [PMID: 29337107]
  6. Biol Rev Camb Philos Soc. 1996 Feb;71(1):1-25 [PMID: 8603119]
  7. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  8. Oncogene. 2016 Aug 4;35(31):4058-68 [PMID: 26686093]
  9. J Neurochem. 2016 Aug;138(4):506-17 [PMID: 27318192]
  10. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13618-23 [PMID: 19620738]
  11. Mol Cell. 2019 Sep 5;75(5):1058-1072.e9 [PMID: 31375263]
  12. Nucleic Acids Res. 2019 Jan 25;47(2):941-952 [PMID: 30462257]
  13. Sci Rep. 2018 Nov 1;8(1):16177 [PMID: 30385798]
  14. Genes (Basel). 2018 May 10;9(5): [PMID: 29748504]
  15. Chem Biol. 2014 Mar 20;21(3):331-7 [PMID: 24529990]
  16. Chem Biol. 2011 Jan 28;18(1):121-30 [PMID: 21276945]
  17. FEBS Lett. 2014 Nov 28;588(23):4297-304 [PMID: 25220675]
  18. Mol Cell. 2008 Feb 29;29(4):419-27 [PMID: 18313381]
  19. Mol Cell Proteomics. 2008 Dec;7(12):2410-8 [PMID: 18653768]
  20. Mol Biol Cell. 2019 Feb 15;30(4):453-466 [PMID: 30586322]
  21. Nat Methods. 2006 May;3(5):357-9 [PMID: 16628205]
  22. Autophagy. 2016 Nov;12(11):2197-2212 [PMID: 27560450]
  23. EMBO Rep. 2006 Aug;7(8):800-5 [PMID: 16826240]
  24. Science. 2006 Jul 14;313(5784):192-6 [PMID: 16794040]
  25. Genomics Inform. 2015 Dec;13(4):94-101 [PMID: 26865839]
  26. Mol Biol Cell. 2012 Jan;23(1):36-44 [PMID: 22049026]
  27. Science. 2014 Jul 25;345(6195):455-9 [PMID: 25061210]
  28. Dev Biol. 2017 Oct 1;430(1):41-51 [PMID: 28844905]
  29. J Mol Med (Berl). 2018 Nov;96(11):1167-1176 [PMID: 30232504]
  30. J Biol Chem. 2010 Apr 2;285(14):10959-68 [PMID: 20129916]
  31. Biochim Biophys Acta. 1985 Jun 10;829(2):173-9 [PMID: 3995050]
  32. J Cell Biol. 2009 Apr 6;185(1):43-50 [PMID: 19332891]
  33. Nucleic Acids Res. 2009 Jan;37(Database issue):D159-62 [PMID: 18957446]
  34. Dev Biol. 2011 Oct 1;358(1):1-8 [PMID: 21784066]
  35. Methods Mol Biol. 2015;1337:93-104 [PMID: 26285886]
  36. Proc Natl Acad Sci U S A. 1990 May;87(10):3665-9 [PMID: 2187187]
  37. PLoS Biol. 2017 May 16;15(5):e2000779 [PMID: 28510592]
  38. Nat Microbiol. 2018 Oct;3(10):1115-1121 [PMID: 30177741]
  39. RNA. 2014 Aug;20(8):1210-22 [PMID: 24935875]
  40. J Biol Chem. 1982 Jun 10;257(11):6003-6 [PMID: 7076660]
  41. Annu Rev Plant Biol. 2019 Apr 29;70:83-117 [PMID: 30892918]
  42. Protein Cell. 2017 Oct;8(10):735-749 [PMID: 28730546]
  43. J Biol Chem. 1985 Aug 15;260(17):9843-7 [PMID: 4019497]
  44. Genom Data. 2015 Aug 14;6:99-107 [PMID: 26697345]
  45. J Biol Chem. 2012 Jun 22;287(26):22043-54 [PMID: 22577148]
  46. Cell Death Discov. 2016 Oct 03;2:16074 [PMID: 27752365]
  47. Wiley Interdiscip Rev RNA. 2011 Nov-Dec;2(6):853-62 [PMID: 21976287]
  48. Int J Biochem Cell Biol. 2013 Jul;45(7):1223-35 [PMID: 23567256]
  49. Biol Cell. 2012 Jan;104(1):13-21 [PMID: 22188480]
  50. Nucleic Acids Res. 2012 Sep 1;40(17):8733-42 [PMID: 22735700]
  51. Methods Mol Biol. 2015;1337:73-7 [PMID: 26285883]
  52. Int J Mol Sci. 2018 Oct 31;19(11): [PMID: 30384441]
  53. Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8451-8456 [PMID: 30962382]
  54. EMBO J. 2006 Dec 13;25(24):5942-50 [PMID: 17110926]
  55. PLoS Genet. 2006 Dec;2(12):e221 [PMID: 17194224]
  56. J Biochem. 2017 Feb 1;161(2):145-154 [PMID: 28039390]
  57. Science. 2002 Jul 5;297(5578):96-9 [PMID: 12098698]
  58. Cell. 1992 May 29;69(5):725-35 [PMID: 1317266]
  59. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3816-25 [PMID: 26124144]
  60. RNA. 2009 Dec;15(12):2147-60 [PMID: 19850906]
  61. Mol Cells. 2017 Jul 31;40(7):441-449 [PMID: 28743182]
  62. J Biol Chem. 2018 Dec 21;293(51):19633-19644 [PMID: 30385512]
  63. J Biol Chem. 1988 Aug 15;263(23):11155-67 [PMID: 2841321]
  64. Sci Rep. 2017 Sep 12;7(1):11323 [PMID: 28900170]
  65. Arch Biochem Biophys. 2006 May 15;449(1-2):17-26 [PMID: 16620762]

Grants

  1. P20 GM109091/NIGMS NIH HHS
  2. R35 GM134931/NIGMS NIH HHS
  3. R21 HG010824/NHGRI NIH HHS
  4. R01 NS102435/NINDS NIH HHS
  5. R01 GM126210/NIGMS NIH HHS
  6. R01 AI139202/NIAID NIH HHS
  7. R35 GM122505/NIGMS NIH HHS
  8. R21 DA047936/NIDA NIH HHS

MeSH Term

Aminoacyltransferases
Angiotensin II
Animals
Arginine
Cell Line
Humans
Mice
Protein Binding
Protein Processing, Post-Translational
RNA, Transfer, Arg
Substrate Specificity

Chemicals

RNA, Transfer, Arg
Angiotensin II
Arginine
Aminoacyltransferases
Ate1 protein, mouse

Word Cloud

Created with Highcharts 10.0.0arginylationtRFATE1tRNAArgcompetitionproteinAte1knockoutfragmentsgenerationArginyltransferasemediatesposttranslationalplayskeyrolesmultiplephysiologicalprocessesutilizesarginyl-tRNAdonorputtingreactiondirectsynthesismachineryaddressquestionATE1-Arg-tRNAspecificitypotentialmechanismenablingin vivoUsingin vitroassaysmodelsfindadditionfull-lengthalsoableutilizeshortbearstructuralresemblancetRNA-derivedrecentlydiscoveredclasssmallregulatorynon-codingRNAsglobalemergingbiologicalrolecellsshowdecreasesignificantincreaseratiotRNA:tRFcomparedwildtypesuggestingfunctionallinkproposephysiologicallyimportanttRFscanserveswitchtranslationtRNA-DerivedFragmentsCanServeArginineDonorsProteinArginylation

Similar Articles

Cited By