Purification of Ciliary Tubulin from Chlamydomonas reinhardtii.

Ron Orbach, Jonathon Howard
Author Information
  1. Ron Orbach: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
  2. Jonathon Howard: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.

Abstract

Cilia and flagella play essential roles in environmental sensing, cell locomotion, and development. These organelles possess a central microtubule-based structure known as the axoneme, which serves as a scaffold and is crucial for the function of cilia. Despite their key roles, the biochemical and biophysical properties of the ciliary proteins are poorly understood. To address this issue, we have developed a novel method to purify functional tubulins from different parts of the axoneme, namely the central pair and B-tubule. We use the biflagellate green alga Chlamydomonas reinhardtii, a model organism for studying cilia due to the conserved structure of this organelle, availability of genetic tools and a large collection of mutant strains. Our method yields highly purified functional axonemal tubulins in sufficient quantities to be used for in vitro biochemical and biophysical studies, such as microtubule dynamic assays. It takes 7 to 8 days to grow enough cells; the isolation of the flagella and the purification of the axonemal tubulins require an additional two full days.© 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth and harvest of large volume of cell culture Support Protocol: Assembly of homemade concentration apparatus Basic Protocol 2: Isolation of flagella Basic Protocol 3: Tubulin extraction and purification.

Keywords

References

  1. Mol Cell Biol. 1989 Mar;9(3):1049-59 [PMID: 2657385]
  2. Biophys J. 2014 Dec 16;107(12):2872-2880 [PMID: 25658008]
  3. Cell. 1978 Aug;14(4):795-804 [PMID: 688394]
  4. Nat Rev Mol Cell Biol. 2019 Jul;20(7):389-405 [PMID: 30948801]
  5. Nat Rev Mol Cell Biol. 2020 Jun;21(6):307-326 [PMID: 32107477]
  6. J Biol Chem. 2016 Jun 17;291(25):12907-15 [PMID: 27129203]
  7. Science. 2006 Aug 18;313(5789):944-8 [PMID: 16917055]
  8. Cell Motil Cytoskeleton. 1992;21(1):1-14 [PMID: 1540990]
  9. Biochemistry. 2011 Oct 11;50(40):8636-44 [PMID: 21888381]
  10. Nat Rev Genet. 2010 May;11(5):331-44 [PMID: 20395968]
  11. J Cell Sci. 1967 Jun;2(2):169-92 [PMID: 4104123]
  12. Methods Cell Biol. 2010;95:221-45 [PMID: 20466138]
  13. J Cell Biol. 1972 Sep;54(3):540-55 [PMID: 5044758]
  14. Methods Enzymol. 1986;134:280-90 [PMID: 3821567]
  15. Methods Cell Biol. 2013;115:155-71 [PMID: 23973072]
  16. J Cell Biol. 2016 May 23;213(4):425-33 [PMID: 27185835]
  17. J Cell Biol. 2011 Jul 25;194(2):165-75 [PMID: 21788366]
  18. Nat Rev Mol Cell Biol. 2011 Apr;12(4):222-34 [PMID: 21427764]
  19. Mol Biol Cell. 2012 Nov;23(22):4393-401 [PMID: 22993214]
  20. Nat Commun. 2019 Apr 23;10(1):1838 [PMID: 31015426]
  21. Methods Enzymol. 2013;524:343-69 [PMID: 23498749]

Grants

  1. R01 GM110386/NIGMS NIH HHS

MeSH Term

Chlamydomonas reinhardtii
Cilia
Plant Proteins
Tubulin

Chemicals

Plant Proteins
Tubulin

Word Cloud

Created with Highcharts 10.0.0flagellaaxonemeciliatubulinsBasicProtocolrolescellcentralstructurebiochemicalbiophysicalmethodfunctionalChlamydomonasreinhardtiilargeaxonemaldayspurificationTubulinCiliaplayessentialenvironmentalsensinglocomotiondevelopmentorganellespossessmicrotubule-basedknownservesscaffoldcrucialfunctionDespitekeypropertiesciliaryproteinspoorlyunderstoodaddressissuedevelopednovelpurifydifferentpartsnamelypairB-tubuleusebiflagellategreenalgamodelorganismstudyingdueconservedorganelleavailabilitygenetictoolscollectionmutantstrainsyieldshighlypurifiedsufficientquantitiesusedvitrostudiesmicrotubuledynamicassaystakes78growenoughcellsisolationrequireadditionaltwofull©2020WileyPeriodicalsLLC1:GrowthharvestvolumecultureSupportProtocol:Assemblyhomemadeconcentrationapparatus2:Isolation3:extractionPurificationCiliarymicrotubulespost-translationalmodificationstubulin

Similar Articles

Cited By