IGF2BP1 is the first positive marker for anaplastic thyroid carcinoma diagnosis.

Jacob Haase, Danny Misiak, Marcus Bauer, Nikolaos Pazaitis, Juliane Braun, Rebecca Pötschke, Alexander Mensch, Jessica Lilian Bell, Henning Dralle, Udo Siebolts, Claudia Wickenhauser, Kerstin Lorenz, Stefan Hüttelmaier
Author Information
  1. Jacob Haase: Institute of Molecular Medicine, Section of Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle, Germany. ORCID
  2. Danny Misiak: Institute of Molecular Medicine, Section of Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle, Germany. ORCID
  3. Marcus Bauer: Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany.
  4. Nikolaos Pazaitis: Institute of Molecular Medicine, Section of Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle, Germany.
  5. Juliane Braun: Institute of Molecular Medicine, Section of Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle, Germany.
  6. Rebecca Pötschke: Institute of Molecular Medicine, Section of Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle, Germany.
  7. Alexander Mensch: Institute of Molecular Medicine, Section of Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle, Germany.
  8. Jessica Lilian Bell: Institute of Molecular Medicine, Section of Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle, Germany.
  9. Henning Dralle: Department of General, Visceral and Transplantation Surgery, Section of Endocrine Surgery, University of Duisburg-Essen, Essen, Germany.
  10. Udo Siebolts: Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany.
  11. Claudia Wickenhauser: Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany.
  12. Kerstin Lorenz: Department of Visceral, Vascular, and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany.
  13. Stefan Hüttelmaier: Institute of Molecular Medicine, Section of Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Halle, Germany. stefan.huettelmaier@medizin.uni-halle.de.

Abstract

Anaplastic thyroid carcinomas (ATC) are rare, but represent the most lethal malignancy of the thyroid. Selective molecular markers and drivers distinguishing ATC from other thyroid carcinomas of follicular origin remain largely unknown, limiting advances in diagnosis and treatment. In a retrospective study, we analyzed gene expression in 36 ATC, 18 poorly differentiated, 132 papillary, and 55 follicular thyroid carcinoma, as well as 124 paired and unpaired normal thyroid tissues in three independent cohorts by RNA-sequencing and immunohistochemistry. RNA-sequencing data in the test cohort suggested selective ATC protein biomarkers. Evaluation of these revealed that ATCs are characterized by the de novo expression of various testis antigens, including melanoma-associated antigen A3 (MAGEA3), but most importantly the oncofetal IGF2 mRNA binding protein 1 (IGF2BP1). Shallow whole genome sequencing essentially excluded that IGF2BP1 upregulation results from gene copy number alterations. Immunohistochemical analyses in all three tumor cohorts confirmed the selective de novo expression of IGF2BP1 protein in ATC. In sum, 75% (27/36) of all tested ATC and 0.5% (1/204) of poorly and well-differentiated thyroid carcinoma tissue samples were positive for IGF2BP1 protein. This indicates that IGF2BP1 protein expression identifies ATC with a diagnostic odds ratio of 612 (95% CI: 74.6-5021). In addition, we found that MAGEA3 is exclusively, although less consistently upregulated in ATC, presenting with an odds ratio of 411 (95% CI: 23.8-7098.7). Importantly, we provide confirmatory evidence that IGF2BP1 and MAGEA3 expression distinguishes ATC from poorly differentiated thyroid carcinoma. IGF2BP1 furthermore identified ATC foci within low-grade follicular thyroid carcinoma. In conclusion, IGF2BP1 represents the most promising single-gene marker available for ATC, followed by MAGEA3, improving on current techniques. Robust markers are essential to help distinguish this high-grade malignancy from other thyroid carcinomas, to guide surgical decision making, therapy and post-resection/therapy monitoring strategies.

References

  1. Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13:644–60. [PMID: 28707679]
  2. Viola D, Valerio L, Molinaro E, Agate L, Bottici V, Biagini A, et al. Treatment of advanced thyroid cancer with targeted therapies: ten years of experience. Endocr Relat Cancer. 2016;23:R185–205. [PMID: 27207700]
  3. Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD, et al. American thyroid association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2012;22:1104–39. [PMID: 23130564]
  4. Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Fuhrer D. Anaplastic thyroid carcinoma: review of treatment protocols. Endocr Relat Cancer. 2018;25:R153–R61. [PMID: 29295821]
  5. Cabanillas ME, Zafereo M, Gunn GB, Ferrarotto R. Anaplastic thyroid carcinoma: treatment in the age of molecular targeted therapy. J Oncol Pract. 2016;12:511–8. [PMID: 27288464]
  6. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Investig. 2016;126:1052–66. [PMID: 26878173]
  7. Pozdeyev N, Gay LM, Sokol ES, Hartmaier R, Deaver KE, Davis S, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24:3059–68. [PMID: 29615459]
  8. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-Mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36:7–13. [PMID: 29072975]
  9. Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10:2764. [PMID: 31235699]
  10. Muller S, Glass M, Singh AK, Haase J, Bley N, Fuchs T, et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 2019;47:375–90. [PMID: 30371874]
  11. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95. [PMID: 29476152]
  12. Busch B, Bley N, Muller S, Glass M, Misiak D, Lederer M, et al. The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family. Nucleic Acids Res. 2016;44:3845–64. [PMID: 26917013]
  13. Gutschner T, Hammerle M, Pazaitis N, Bley N, Fiskin E, Uckelmann H, et al. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology. 2014;59:1900–11. [PMID: 24395596]
  14. Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013;70:2657–75. [PMID: 23069990]
  15. Kobel M, Weidensdorfer D, Reinke C, Lederer M, Schmitt WD, Zeng K, et al. Expression of the RNA-binding protein IMP1 correlates with poor prognosis in ovarian carcinoma. Oncogene. 2007;26:7584–9. [PMID: 17546046]
  16. Bell JL, Turlapati R, Liu T, Schulte JH, Huttelmaier S. IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma. J Clin Oncol. 2015;33:1285–93. [PMID: 25753434]
  17. Hirsch FR, Varella-Garcia M, Bunn PA Jr., Di Maria MV, Veve R, Bremmes RM, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807. [PMID: 12953099]
  18. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. [PMID: 23618408]
  19. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. [PMID: 3322381]
  20. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
  21. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic Acids Res. 2016;44:D710–6. [PMID: 26687719]
  22. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. [PMID: 19910308]
  23. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. [PMID: 20196867]
  24. Muller S, Bley N, Glass M, Busch B, Rousseau V, Misiak D, et al. IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors. Nucleic Acids Res. 2018;46:6285–303. [PMID: 29660014]
  25. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7. [PMID: 22455463]
  26. Marini F, Binder H. pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components. BMC Bioinforma. 2019;20:331.
  27. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.
  28. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12:e1006239. [PMID: 27494611]
  29. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25. [PMID: 26771021]
  30. Carina V, Zito G, Pizzolanti G, Richiusa P, Criscimanna A, Rodolico V, et al. Multiple pluripotent stem cell markers in human anaplastic thyroid cancer: the putative upstream role of SOX2. Thyroid. 2013;23:829–37. [PMID: 23301671]
  31. Guo Z, Hardin H, Lloyd RV. Cancer stem-like cells and thyroid cancer. Endocr Relat Cancer. 2014;21:T285–300. [PMID: 24788702]
  32. Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S, et al. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol. 2013;26:54–61. [PMID: 22899291]
  33. da Silva VL, Fonseca AF, Fonseca M, da Silva TE, Coelho AC, Kroll JE, et al. Genome-wide identification of cancer/testis genes and their association with prognosis in a pan-cancer analysis. Oncotarget. 2017;8:92966–77. [PMID: 29190970]
  34. Doyle GA, Bourdeau-Heller JM, Coulthard S, Meisner LF, Ross J. Amplification in human breast cancer of a gene encoding a c-myc mRNA-binding protein. Cancer Res. 2000;60:2756–9. [PMID: 10850408]
  35. Sakr HI, Chute DJ, Nasr C, Sturgis CD. cMYC expression in thyroid follicular cell-derived carcinomas: a role in thyroid tumorigenesis. Diagn Pathol. 2017;12:71. [PMID: 28974238]
  36. Woodward EL, Biloglav A, Ravi N, Yang M, Ekblad L, Wennerberg J, et al. Genomic complexity and targeted genes in anaplastic thyroid cancer cell lines. Endocr Relat Cancer. 2017;24:209–20. [PMID: 28235956]
  37. Kuhn E, Ragazzi M, Ciarrocchi A, Torricelli F, de Biase D, Zanetti E, et al. Angiosarcoma and anaplastic carcinoma of the thyroid are two distinct entities: a morphologic, immunohistochemical, and genetic study. Mod Pathol. 2019;32:787–98. [PMID: 30723294]
  38. Degrauwe N, Suva ML, Janiszewska M, Riggi N, Stamenkovic I. IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer. Genes Dev. 2016;30:2459–74. [PMID: 27940961]
  39. Cao J, Yu YE, Li NN, Wu YX, Shi JN, Fang MY. Thyroid metastasis from non-small cell lung cancer. Int J Clin Exp Pathol. 2019;12:3013–21. [PMID: 31934139]
  40. Bishop JA, Sharma R, Westra WH. PAX8 immunostaining of anaplastic thyroid carcinoma: a reliable means of discerning thyroid origin for undifferentiated tumors of the head and neck. Hum Pathol. 2011;42:1873–7. [PMID: 21663937]
  41. Mahapatra L, Andruska N, Mao C, Le J, Shapiro DJ. A Novel IMP1 Inhibitor, BTYNB, Targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation. Transl Oncol. 2017;10:818–27. [PMID: 28846937]
  42. Lu YC, Parker LL, Lu T, Zheng Z, Toomey MA, White DE, et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-Restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol. 2017;35:3322–9. [PMID: 28809608]
  43. Dreno B, Thompson JF, Smithers BM, Santinami M, Jouary T, Gutzmer R, et al. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19:916–29. [PMID: 29908991]

Grants

  1. 70112631/Deutsche Krebshilfe (German Cancer Aid)

MeSH Term

Adolescent
Adult
Aged
Aged, 80 and over
Antigens, Neoplasm
Biomarkers, Tumor
Child
Female
Humans
Male
Middle Aged
Neoplasm Proteins
RNA-Binding Proteins
Retrospective Studies
Thyroid Carcinoma, Anaplastic
Thyroid Neoplasms
Young Adult

Chemicals

Antigens, Neoplasm
Biomarkers, Tumor
IGF2BP1 protein, human
MAGEA3 protein, human
Neoplasm Proteins
RNA-Binding Proteins