Region and Cell Type Distribution of TCF4 in the Postnatal Mouse Brain.

Hyojin Kim, Noah C Berens, Nicole E Ochandarena, Benjamin D Philpot
Author Information
  1. Hyojin Kim: Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  2. Noah C Berens: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  3. Nicole E Ochandarena: MD-Ph.D. Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  4. Benjamin D Philpot: Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

Abstract

Transcription factor 4 is a class I basic helix-loop-helix transcription factor regulating gene expression. Altered gene expression has been linked to non-syndromic intellectual disability, schizophrenia, and a severe neurodevelopmental disorder known as Pitt-Hopkins syndrome. An understanding of the cell types expressing TCF4 protein in the mouse brain is needed to help identify potential pathophysiological mechanisms and targets for therapeutic delivery in TCF4-linked disorders. Here we developed a novel green fluorescent protein reporter mouse to visualize TCF4-expressing cells throughout the brain. Using this TCF4 reporter mouse, we observed prominent expression of TCF4 in the pallial region and cerebellum of the postnatal brain. At the cellular level, both glutamatergic and GABAergic neurons express TCF4 in the cortex and hippocampus, while only a subset of GABAergic interneurons express TCF4 in the striatum. Among glial cell groups, TCF4 is present in astrocytes and immature and mature oligodendrocytes. In the cerebellum, cells in the granule and molecular layer express TCF4. Our findings greatly extend our knowledge of the spatiotemporal and cell type-specific expression patterns of TCF4 in the brain, and hence, lay the groundwork to better understand TCF4-linked neurological disorders. Any effort to restore TCF4 functions through small molecule or genetic therapies should target these brain regions and cell groups to best recapitulate TCF4 expression patterns.

Keywords

References

  1. Neuron. 2009 May 14;62(3):312-26 [PMID: 19447088]
  2. Cell Rep. 2018 Aug 21;24(8):2179-2190.e7 [PMID: 30134177]
  3. J Neurosci. 2009 Sep 9;29(36):11399-408 [PMID: 19741146]
  4. PLoS One. 2013 Aug 23;8(8):e73169 [PMID: 24058414]
  5. Cerebellum. 2008;7(4):607-10 [PMID: 19057977]
  6. Nat Neurosci. 2010 Aug;13(8):995-1002 [PMID: 20639874]
  7. Science. 2007 Feb 23;315(5815):1143-7 [PMID: 17289941]
  8. Neuron. 2016 Apr 6;90(1):43-55 [PMID: 26971948]
  9. Glia. 1996 Jun;17(2):169-74 [PMID: 8776583]
  10. J Clin Invest. 2015 May;125(5):2069-76 [PMID: 25866966]
  11. Biol Psychiatry. 2013 Sep 15;74(6):418-26 [PMID: 23482246]
  12. Cereb Cortex. 2020 May 14;30(5):3102-3115 [PMID: 31845732]
  13. Neuron. 2019 Apr 3;102(1):263 [PMID: 30946822]
  14. J Psychiatry Neurosci. 2017 May;42(3):181-188 [PMID: 27689884]
  15. Cerebellum. 2012 Jun;11(2):531-42 [PMID: 21901523]
  16. Cereb Cortex. 1993 Jul-Aug;3(4):273-89 [PMID: 8104567]
  17. Nat Rev Drug Discov. 2018 Oct;17(10):767 [PMID: 30206384]
  18. Front Mol Neurosci. 2016 Oct 03;9:94 [PMID: 27752241]
  19. Trends Neurosci. 2009 May;32(5):291-301 [PMID: 19380167]
  20. Clin Genet. 2019 Apr;95(4):462-478 [PMID: 30677142]
  21. Nat Neurosci. 1999 May;2(5):467-72 [PMID: 10321252]
  22. Front Hum Neurosci. 2014 Sep 30;8:742 [PMID: 25324753]
  23. Trends Neurosci. 2017 Jul;40(7):397-407 [PMID: 28578790]
  24. Nat Genet. 2018 Jun;50(6):825-833 [PMID: 29785013]
  25. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17184-9 [PMID: 16284245]
  26. Mol Ther Methods Clin Dev. 2017 Apr 19;5:106-115 [PMID: 28497072]
  27. Neuron. 2008 Nov 26;60(4):543-54 [PMID: 19038213]
  28. Mol Cell Biol. 2000 Jan;20(2):429-40 [PMID: 10611221]
  29. Am J Hum Genet. 2007 May;80(5):994-1001 [PMID: 17436255]
  30. Dev Neurobiol. 2011 Jan 1;71(1):45-61 [PMID: 21154909]
  31. Neuron. 2016 Oct 5;92(1):84-92 [PMID: 27710792]
  32. Brain. 2006 Feb;129(Pt 2):290-2 [PMID: 16434422]
  33. Nat Rev Neurosci. 2004 Oct;5(10):793-807 [PMID: 15378039]
  34. Eur J Neurosci. 2007 Jan;25(1):17-30 [PMID: 17241263]
  35. N Engl J Med. 2014 Mar 27;370(13):1209-1219 [PMID: 24670167]
  36. Hum Mol Genet. 2012 Jul 1;21(13):2873-88 [PMID: 22460224]
  37. Front Cell Neurosci. 2015 Jul 08;9:257 [PMID: 26217183]
  38. J Comp Neurol. 1972 May;145(1):61-83 [PMID: 4624784]
  39. Genesis. 2006 Dec;44(12):611-21 [PMID: 17146780]
  40. Neuron. 2011 Sep 22;71(6):995-1013 [PMID: 21943598]
  41. Physiol Rev. 2017 Oct 1;97(4):1619-1747 [PMID: 28954853]
  42. Cereb Cortex. 1997 Jun;7(4):347-58 [PMID: 9177765]
  43. Eur J Med Genet. 2017 Nov;60(11):565-571 [PMID: 28807867]
  44. Nat Neurosci. 2011 Feb;14(2):154-62 [PMID: 21270784]
  45. Biochim Biophys Acta. 1994 Jun 21;1218(2):129-35 [PMID: 8018712]
  46. J Neurosci. 2018 Jan 24;38(4):918-936 [PMID: 29222403]
  47. J Med Genet. 2008 Nov;45(11):738-44 [PMID: 18728071]
  48. Orphanet J Rare Dis. 2016 May 14;11(1):62 [PMID: 27179618]
  49. Science. 1996 Nov 15;274(5290):1133-8 [PMID: 8895456]
  50. Eur J Med Genet. 2016 Jun;59(6-7):310-4 [PMID: 27132474]
  51. Cell Rep. 2014 Dec 11;9(5):1635-1643 [PMID: 25466248]
  52. J Child Neurol. 2018 Mar;33(3):233-244 [PMID: 29318938]
  53. J Comp Neurol. 1969 Dec;137(4):433-57 [PMID: 5361244]
  54. Mol Autism. 2018 Mar 22;9:20 [PMID: 29588831]
  55. Hum Mutat. 2012 Jan;33(1):64-72 [PMID: 22045651]
  56. J Neurosci. 2010 Feb 10;30(6):2223-34 [PMID: 20147549]
  57. Schizophr Bull. 2018 Aug 20;44(5):1100-1110 [PMID: 29228394]
  58. Psychiatr Genet. 2005 Mar;15(1):37-44 [PMID: 15722956]
  59. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  60. J Neurosci. 2010 Dec 15;30(50):16796-808 [PMID: 21159951]
  61. Bioinformatics. 2011 Apr 15;27(8):1179-80 [PMID: 21349861]
  62. Nat Neurosci. 2020 Mar;23(3):375-385 [PMID: 32015540]
  63. Front Syst Neurosci. 2013 May 10;7:15 [PMID: 23717269]
  64. Science. 2005 Oct 14;310(5746):317-20 [PMID: 16224024]
  65. Eur J Hum Genet. 2018 Jul;26(7):996-1006 [PMID: 29695756]
  66. Hum Mutat. 2009 Apr;30(4):669-76 [PMID: 19235238]
  67. Hum Mol Genet. 2018 Sep 15;27(18):3246-3256 [PMID: 29905862]
  68. Am J Med Genet B Neuropsychiatr Genet. 2015 Jul;168B(5):354-62 [PMID: 26010163]
  69. Nat Rev Neurosci. 2008 Feb;9(2):110-22 [PMID: 18209730]
  70. J Mol Diagn. 2012 Jan;14(1):22-9 [PMID: 22166544]
  71. Clin Dysmorphol. 2006 Apr;15(2):47-54 [PMID: 16531728]
  72. Mol Psychiatry. 2019 Aug;24(8):1235-1246 [PMID: 30705426]
  73. Nat Rev Neurosci. 2000 Oct;1(1):59-65 [PMID: 11252769]
  74. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):1027-32 [PMID: 17209010]
  75. Cell Rep. 2016 Sep 6;16(10):2666-2685 [PMID: 27568567]
  76. PLoS One. 2011;6(7):e22138 [PMID: 21789225]
  77. Am J Hum Genet. 2007 May;80(5):988-93 [PMID: 17436254]
  78. Transl Psychiatry. 2018 Mar 15;8(1):67 [PMID: 29540662]

Grants

  1. P30 NS045892/NINDS NIH HHS
  2. P50 HD103573/NICHD NIH HHS
  3. R01 NS114086/NINDS NIH HHS
  4. U54 HD079124/NICHD NIH HHS

Word Cloud

Created with Highcharts 10.0.0TCF4expressionbraincellfactordisordermouseexpress4transcriptiongeneintellectualdisabilityschizophrenianeurodevelopmentalPitt-HopkinssyndromeproteinTCF4-linkeddisordersreportercellscerebellumGABAergicgroupspatternsTranscriptionclassbasichelix-loop-helixregulatingAlteredlinkednon-syndromicsevereknownunderstandingtypesexpressingneededhelpidentifypotentialpathophysiologicalmechanismstargetstherapeuticdeliverydevelopednovelgreenfluorescentvisualizeTCF4-expressingthroughoutUsingobservedprominentpallialregionpostnatalcellularlevelglutamatergicneuronscortexhippocampussubsetinterneuronsstriatumAmongglialpresentastrocytesimmaturematureoligodendrocytesgranulemolecularlayerfindingsgreatlyextendknowledgespatiotemporaltype-specifichencelaygroundworkbetterunderstandneurologicaleffortrestorefunctionssmallmoleculegenetictherapiestargetregionsbestrecapitulateRegionCellTypeDistributionPostnatalMouseBrainautismspectrum

Similar Articles

Cited By