Quantum thermodynamics of single particle systems.

Md Manirul Ali, Wei-Ming Huang, Wei-Min Zhang
Author Information
  1. Md Manirul Ali: Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan.
  2. Wei-Ming Huang: Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan.
  3. Wei-Min Zhang: Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan. wzhang@mail.ncku.edu.tw.

Abstract

Thermodynamics is built with the concept of equilibrium states. However, it is less clear how equilibrium thermodynamics emerges through the dynamics that follows the principle of quantum mechanics. In this paper, we develop a theory of quantum thermodynamics that is applicable for arbitrary small systems, even for single particle systems coupled with a reservoir. We generalize the concept of temperature beyond equilibrium that depends on the detailed dynamics of quantum states. We apply the theory to a cavity system and a two-level system interacting with a reservoir, respectively. The results unravels (1) the emergence of thermodynamics naturally from the exact quantum dynamics in the weak system-reservoir coupling regime without introducing the hypothesis of equilibrium between the system and the reservoir from the beginning; (2) the emergence of thermodynamics in the intermediate system-reservoir coupling regime where the Born-Markovian approximation is broken down; (3) the breakdown of thermodynamics due to the long-time non-Markovian memory effect arisen from the occurrence of localized bound states; (4) the existence of dynamical quantum phase transition characterized by inflationary dynamics associated with negative dynamical temperature. The corresponding dynamical criticality provides a border separating classical and quantum worlds. The inflationary dynamics may also relate to the origin of big bang and universe inflation. And the third law of thermodynamics, allocated in the deep quantum realm, is naturally proved.

References

  1. Cazalilla, M. A. & Rigol, M. Focus on dynamics and thermalization in isolated quantum many-body systems. New J. Phys.12, 055015 (2010).
  2. Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys.8, 325 (2012).
  3. Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science337, 1318 (2012). [PMID: 22956685]
  4. Langen, T., Geiger, R., Kuhnert, M., Rauer, B. & Schmiedmayer, J. Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys.9, 640 (2013).
  5. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science353, 794 (2016). [PMID: 27540168]
  6. Gemmer, J., Michel, M. & Mahler, G. Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems 2nd edn. (Springer, Berlin, 2009).
  7. Campisi, M., Hänggi, P. & Talkner, P. Colloquium: quantum fluctuation relations: foundations and applications. Rev. Mod. Phys.83, 771 (2011).
  8. Jarzynski, C. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys.2, 329 (2011).
  9. Scully, M. O., Chapin, K. R., Dorfman, K. E., Kim, M. B. & Svidzinsky, A. Quantum heat engine power can be increased by noise-induced coherence. PNAS108, 15097 (2011). [PMID: 21876187]
  10. Kosloff, R. Quantum thermodynamics: a dynamical viewpoint. Entropy15, 2100 (2013).
  11. Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature511, 202 (2014). [PMID: 25008526]
  12. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys.11, 124 (2015).
  13. Esposito, M., Ochoa, M. A. & Galperin, M. Quantum thermodynamics: a nonequilibrium Greens function approach. Phys. Rev. Lett.114, 080602 (2015). [PMID: 25768745]
  14. Pekola, J. P. Towards quantum thermodynamics in electronic circuits. Nat. Phys.11, 118 (2015).
  15. Gelbwaser-Klimovsky, D., Niedenzu, W. & Kurizki, G. Thermodynamics of quantum systems under dynamical control. Adv. Atom. Mol. Opt. Phys.64, 329 (2015).
  16. Roßnagel, J. et al. A single-atom heat engine. Science352, 325 (2016). [PMID: 27081067]
  17. Millen, J. & Xuereb, A. Perspective on quantum thermodynamics. New J. Phys.18, 011002 (2016).
  18. Anders, J. & Esposito, M. Focus on quantum thermodynamics. New J. Phys.19, 010201 (2017).
  19. Ochoa, M. A., Zimbovskaya, N. & Nitzan, A. Quantum thermodynamics for driven dissipative bosonic systems. Phys. Rev. B97, 085434 (2018).
  20. Deffner, S. & Campbell, S. Quantum Thermodynamics, (https://iopscience.iop.org/book/978-1-64327-658-8).
  21. Zhang, W. M., Lo, P. Y., Xiong, H. N., Tu, M. W. Y. & Nori, F. General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett.109, 170402 (2012). [PMID: 23215166]
  22. Tu, M. W. Y. & Zhang, W. M. Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B78, 235311 (2008).
  23. Jin, J., Tu, M. W. Y., Zhang, W. M. & Yan, J. Y. Non-equilibrium quantum theory for nanodevices based on the Feynman-Vernon influence functional. New. J. Phys.12, 083013 (2010).
  24. Lei, C. U. & Zhang, W. M. A quantum photonic dissipative transport theory. Ann. Phys.327, 1408 (2012).
  25. Zhang, W. M. Exact master equation and general non-Markovian dynamics in open quantum systems, arXiv:1807.01965 (2018).
  26. Callen, H. B. Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985).
  27. Landau, L. D. & Lifshitz, E. M. Statistical Physics Vol. 5 of Course of Theoretical Physics, (2nd Ed., Pergamon Press, 1969).
  28. Kubo, R., Toda, M. & Hashitsume, N. Statistical physics II: Nonequilibrium statistical mechanic (Springer Series in Solid-State Sciences, Vol. 31, 2nd ed., 1991).
  29. Caldeira, A. O. & Leggett, A. J. Path integral approach to quantum Brownian motion. Physica121A, 587 (1983).
  30. Huang, K. Statistical Mechanics (2nd ed., John Wiley and Sons, 1987), Chap. 8.7, p. 189–191.
  31. De Groot, S. R. & Mazur, P. Non-equilibrium Thermodynamics (Dover, New York, 2013).
  32. Demirel, Y. Nonequilibrium Thermodynamics: Transport and rate Processes in Physical, Chemical and Biological Systems 3rd edn. (Elsevier Science, Amsterdam, 2014).
  33. Hu, B.-L., Paz, J. P. & Zhang, Y. Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D45, 2843 (1992).
  34. Ford, G. W. & Connell, R. F. Exact solution of the Hu-Paz-Zhang master equation. Phys. Rev. D64, 105020 (2001).
  35. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.75, 715 (2003).
  36. Xiong, H. N., Lo, P. L., Zhang, W. M., Feng, D. F. & Nori, F. Non-Markovian complexity in the quantum-to-classical transition. Sci. Rep.5, 13353 (2015). [PMID: 26303002]
  37. Lo, P. Y., Xiong, H. N. & Zhang, W. M. Breakdown of Bose–Einstein distribution in photonic crystals. Sci. Rep.5, 9423 (2015). [PMID: 25822135]
  38. Xiong, F. L. & Zhang, W. M. Exact dynamics and thermalization of open quantum systems coupled to reservoir through particle exchanges, arXiv:2003.09598 .
  39. von Neumann, J. Mathematische Grundlagen der Quantenmechanik. (Springer, Berlin, 1932), also Mathematical foundations of quantum mechanics. translated by Beyer, R. T. (Princeton university press, 1955).
  40. Feynman, R. P. & Vernon, F. L. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys.24, 118 (1963).
  41. Schwinger, J. Brownian motion of a quantum oscillator. J. Math. Phys.2, 407 (1961).
  42. Keldysh, L. V. Diagram technique for nonequilibrium processes. Sov. Phys. JETP20, 1018 (1965).
  43. Kadanoff, L. P. & Baym, G. Quantum Statistical Mechanics (Benjamin, New York, 1962).
  44. See the more detailed discussion on pages 329-331 in the classical textbook of thermodynamics, Ref. [26].
  45. Hänggi, P., Ingold, G.-L. & Talkner, P. Finite quantum dissipation: the challenge of obtaining specific heat. New J. Phys.10, 115008 (2008).
  46. Ingold, G.-L., Hänggi, P. & Talkner, P. Specific heat anomalies of open quantum systems. Phys. Rev. E.79, 061105 (2009).
  47. Ochoa, M. A., Bruch, A. & Nitzan, A. Energy distribution and local fluctuations in strongly coupled open quantum systems: the extended resonant level model. Phys. Rev. B94, 035420 (2016).
  48. Carrego, M., Solinas, P., Sassetti, M. & Weiss, U. Energy exchange in driven open quantum systems at strong coupling. Phys. Rev. Lett.116, 240403 (2016).
  49. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev.109, 1492 (1958).
  50. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev.124, 1866 (1961).
  51. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE51, 89 (1963).
  52. Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms (Dover, New York, 1987).
  53. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures Rev. Mod. Phys.82, 2257 (2010).
  54. Mahan, G. D. Many-Body Physics (Kluwer Academic/Plenum Publishers, New York, 2000).
  55. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions (Wiley, New York, 1992).
  56. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge University Press, Cambridge, 1997).
  57. Guth, A. H. Inflationary universe: a possible solution to the horizon and fatness problems. Phys. Rev. D23, 347 (1981).
  58. Wu, M. H., Lei, C. U., Zhang, W. M. & Xiong, H. N. Non-Markovian dynamics of a microcavity coupled to a waveguide in photonic crystals. Opt. Express18, 18407 (2010). [PMID: 20721235]
  59. Lei, C. U. & Zhang, W. M. Decoherence suppression of open quantum systems through a strong coupling to non-Markovian reservoirs. Phys. Rev. A84, 052116 (2011).
  60. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys.59, 1 (1987).
  61. Brandão, F., Horodecki, M., Ng, N., Oppenheim, J. & Wehner, S. The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci.112, 3275 (2015). [PMID: 25675476]
  62. Riera, A., Gogolin, C. & Eisert, J. Thermalization in nature and on a quantum computer. Phys. Rev. Lett.108, 080402 (2012). [PMID: 22463502]
  63. Seifert, U. First and second law of thermodynamics at strong coupling. Phys. Rev. Lett.116, 020601 (2016). [PMID: 26824534]
  64. Xiong, H. N., Zhang, W. M., Wang, X. & Wu, M. H. Exact non-Markovian cavity dynamics strongly coupled to a reservoir. Phys. Rev. A82, 012105 (2010).
  65. Gallego, R., Riera, A. & Eisert, J. Thermal machines beyond the weak coupling regime. New J. Phys.16, 125009 (2014).
  66. Esposito, M., Ochoa, M. A. & Galperin, M. Nature of heat in strongly coupled open quantum systems. Phys. Rev. B92, 235440 (2015).
  67. Campisi, M., Talkner, P. & Hänggi, P. Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett.102, 210401 (2009). [PMID: 19519085]
  68. Jarzynski, C. Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X7, 011008 (2017).
  69. Perarnau-Llobet, M., Wilming, H., Riera, A., Gallego, R. & Eisert, J. Strong coupling corrections in quantum thermodynamics. Phys. Rev. Lett.120, 120602 (2018). [PMID: 29694098]
  70. Ali, M. M., Lo, P. Y., Tu, M. W. Y. & Zhang, W. M. Non-Markovianity measure using two-time correlation functions. Phys. Rev. A92, 062306 (2015).
  71. Ali, M. M. & Zhang, W. M. Nonequilibrium transient dynamics of photon statistics. Phys. Rev. A95, 033830 (2017).
  72. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Ann. Rev. Condens. Matter Phys.6, 15 (2015).
  73. Lin, Y. C., Yang, P. Y. & Zhang, W. M. Non-equilibrium quantum phase transition via entanglement decoherence dynamics. Sci. Rep.6, 34804 (2016). [PMID: 27713556]
  74. Astier, P. & Pain, R. Observational evidence of the accelerated expansion of the universe. C. R. Phys.13, 521 (2012).
  75. Hooft, G. Quantum gravity as a dissipative deterministic system. Class. Quantum Grav.16, 3263 (1999).
  76. Hartle, J. B. & Hawking, S. W. Wave function of the Universe. Phys. Rev. D28, 2960 (1983).
  77. Feng, L., Clark, L. W., Gaj, A. & Chin, C. Coherent inflationary dynamics for Bose–Einstein condensates crossing a quantum critical point. Nat. Phys.14, 269 (2018).
  78. Garraway, B. M. Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A55, 2290 (1997).
  79. Vacchini, B. & Breuer, H. P. Exact master equations for the non-Markovian decay of a qubit. Phys. Rev. A81, 042103 (2010).
  80. Bellomo, B., Franco, R. L. & Compagno, G. Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett.99, 160502 (2007). [PMID: 17995229]
  81. Ramsey, N. F. Thermodynamics and statistical mechanics at negative absolute temperatures. Phys. Rev.103, 20 (1956).
  82. Klein, M. J. Negative absolute temperatures. Phys. Rev.104, 589 (1956).
  83. Purcell, E. M. & Pound, R. V. A nuclear spin system at negative temperature. Phys. Rev.81, 279 (1951).
  84. Oja, A. S. & Lounasmaa, O. V. Nuclear magnetic ordering in simple metals at positive and negative nanokelvin temperatures. Rev. Mod. Phys.69, 1 (1997).
  85. Medley, P. et al. Spin gradient demagnetization cooling of ultracold atoms. Phys. Rev. Lett.106, 195301 (2011). [PMID: 21668171]
  86. Braun, S. et al. Negative absolute temperature for motional degrees of freedom. Science339, 52 (2013). [PMID: 23288533]
  87. Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature448, 889 (2007). [PMID: 17713527]
  88. Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature455, 510 (2008). [PMID: 18818653]
  89. Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature477, 73 (2011). [PMID: 21886159]
  90. Yang, P. Y. & Zhang, W. M. Master equation approach to transient quantum transport in nanostructures. Front. Phys.12, 127204 (2017).

Word Cloud

Created with Highcharts 10.0.0thermodynamicsquantumdynamicsequilibriumstatessystemsreservoirsystemdynamicalconcepttheorysingleparticletemperatureemergencenaturallysystem-reservoircouplingregimeinflationaryThermodynamicsbuiltHoweverlessclearemergesfollowsprinciplemechanicspaperdevelopapplicablearbitrarysmallevencoupledgeneralizebeyonddependsdetailedapplycavitytwo-levelinteractingrespectivelyresultsunravels1exactweakwithoutintroducinghypothesisbeginning2intermediateBorn-Markovianapproximationbroken3breakdownduelong-timenon-Markovianmemoryeffectarisenoccurrencelocalizedbound4existencephasetransitioncharacterizedassociatednegativecorrespondingcriticalityprovidesborderseparatingclassicalworldsmayalsorelateoriginbigbanguniverseinflationthirdlawallocateddeeprealmprovedQuantum

Similar Articles

Cited By